1
|
Mohammadi M, Alian M, Dale B, Ubanwa B, Balan V. Multifaced application of AFEX-pretreated biomass in producing second-generation biofuels, ruminant animal feed, and value-added bioproducts. Biotechnol Adv 2024; 72:108341. [PMID: 38499256 DOI: 10.1016/j.biotechadv.2024.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers. Consequently, the bioconversion of lignocellulosic biomass into fermentable sugars remains a prominent challenge in biorefinery processes to produce biofuels and biochemicals. In addressing these challenges, extensive efforts have been dedicated to mitigating biomass recalcitrance through diverse pretreatment methods. One noteworthy process is Ammonia Fiber Expansion (AFEX) pretreatment, characterized by its dry-to-dry nature and minimal water usage. The volatile ammonia, acting as a catalyst in the process, is recyclable. AFEX contributes to cleaning biomass ester linkages and facilitating the opening of cell wall structures, enhancing enzyme accessibility and leading to a fivefold increase in sugar conversion compared to untreated biomass. Over the last decade, AFEX has demonstrated substantial success in augmenting the efficiency of biomass conversion processes. This success has unlocked the potential for sustainable and economically viable biorefineries. This paper offers a comprehensive review of studies focusing on the utilization of AFEX-pretreated biomass in the production of second-generation biofuels, ruminant feed, and additional value-added bioproducts like enzymes, lipids, proteins, and mushrooms. It delves into the details of the AFEX pretreatment process at both laboratory and pilot scales, elucidates the mechanism of action, and underscores the role of AFEX in the biorefinery for developing biofuels and bioproducts, and nutritious ruminant animal feed production. While highlighting the strides made, the paper also addresses current challenges in the commercialization of AFEX pretreatment within biorefineries. Furthermore, it outlines critical considerations that must be addressed to overcome these challenges, ensuring the continued progress and widespread adoption of AFEX in advancing sustainable and economically viable bio-based industries.
Collapse
Affiliation(s)
- Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Bruce Dale
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA.
| |
Collapse
|
2
|
Yang E, Chon K, Kim KY, Le GTH, Nguyen HY, Le TTQ, Nguyen HTT, Jae MR, Ahmad I, Oh SE, Chae KJ. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. BIORESOURCE TECHNOLOGY 2023; 369:128380. [PMID: 36427768 DOI: 10.1016/j.biortech.2022.128380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic and algal biomasses are known to be vital feedstocks to establish a green hydrogen supply chain toward achieving a carbon-neutral society. However, one of the most pressing issues to be addressed is the low digestibility of these biomasses in biorefinery processes, such as dark fermentation, to produce green hydrogen. To date, various pretreatment approaches, such as physical, chemical, and biological methods, have been examined to enhance feedstock digestibility. However, neither systematic reviews of pretreatment to promote biohydrogen production in dark fermentation nor economic feasibility analyses have been conducted. Thus, this study offers a comprehensive review of current biomass pretreatment methods to promote biohydrogen production in dark fermentation. In addition, this review has provided comparative analyses of the technological and economic feasibility of existing pretreatment techniques and discussed the prospects of the pretreatments from the standpoint of carbon neutrality and circular economy.
Collapse
Affiliation(s)
- Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hai Yen Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mi-Ri Jae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
3
|
Chen J, Tan X, Miao C, Zhang Y, Yuan Z, Zhuang X. A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system. BIORESOURCE TECHNOLOGY 2021; 342:125963. [PMID: 34852441 DOI: 10.1016/j.biortech.2021.125963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A novel ternary solvent system for organosolv fractionation of lignocellulosic biomass, named APW process, which is composed of acetone, phenoxyethanol and water with the advantages of monophasic deconstruction and biphasic separation of components was developed. Through fractionation of amorpha as a case study, a monophasic APW solution (acetone/phenoxyethanol/water = 5:11:4, volume ratio) with the best lignin affinity was constructed based on Hansen solubility parameters. According to Taguchi experimental design, the optimal conditions were 130 °C, 70 min, 0.15 M sulfuric acid and 20 LSR. Under optimal conditions, removal of lignin and hemicellulose reached 95.60% and 98.39%, respectively. While 80.48% of cellulose was retained in residue and its digestibility was 80.36%. Then, 83.74% of hemicellulose was recovered from aqueous as sugars, and 35.64% of lignin was recovered by precipitation. Moreover, APW process also have effective fractionation of sugarcane bagasse, corn cob and pine, cellulose and hemicellulose recovery were both over 80%.
Collapse
Affiliation(s)
- Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Changlin Miao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Collaborative Innovation Centre of Biomass Energy, Zhengzhou 450002, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|