1
|
Gubelit YI. Studies of Lacustrine Phytoperiphyton: Current Trends and Prospects Considering Algae-Bacteria Interactions. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622060054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Grilo ML, Pereira A, Sousa-Santos C, Robalo JI, Oliveira M. Climatic Alterations Influence Bacterial Growth, Biofilm Production and Antimicrobial Resistance Profiles in Aeromonas spp. Antibiotics (Basel) 2021; 10:1008. [PMID: 34439058 PMCID: PMC8389027 DOI: 10.3390/antibiotics10081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
Climate change is expected to create environmental disruptions that will impact a wide array of biota. Projections for freshwater ecosystems include severe alterations with gradients across geographical areas. Life traits in bacteria are modulated by environmental parameters, but there is still uncertainty regarding bacterial responses to changes caused by climatic alterations. In this study, we used a river water microcosm model to evaluate how Aeromonas spp., an important pathogenic and zoonotic genus ubiquitary in aquatic ecosystems, responds to environmental variations of temperature and pH as expected by future projections. Namely, we evaluated bacterial growth, biofilm production and antimicrobial resistance profiles of Aeromonas species in pure and mixed cultures. Biofilm production was significantly influenced by temperature and culture, while temperature and pH affected bacterial growth. Reversion of antimicrobial susceptibility status occurred in the majority of strains and tested antimicrobial compounds, with several combinations of temperature and pH contributing to this effect. Current results highlight the consequences that bacterial genus such as Aeromonas will experience with climatic alterations, specifically how their proliferation and virulence and phenotypic resistance expression will be modulated. Such information is fundamental to predict and prevent future outbreaks and deleterious effects that these bacterial species might have in human and animal populations.
Collapse
Affiliation(s)
- Miguel L. Grilo
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Ana Pereira
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Carla Sousa-Santos
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Joana I. Robalo
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
3
|
Yuan S, Yu Z, Pan S, Huang J, Meng F. Deciphering the succession dynamics of dominant and rare genera in biofilm development process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139961. [PMID: 32540665 DOI: 10.1016/j.scitotenv.2020.139961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Deciphering the succession dynamics of dominant and rare taxa is crucial to understand the stability and ecosystem functions of biofilm communities. However, the essential laws of the succession dynamics based on dominant and rare taxa were still unenlightened. Herein, we investigated the succession dynamics of dominant and rare genera in multi-species biofilms developed in flow cells fed with 10 and 40 mg-TOC/L LB broth. The relative abundance of dominant genera (Enterobacteria and Acinetobacter) decreased remarkably (from 94.63% to 73.22%) in 10 mg-TOC/L LB broth, whereas they kept relatively steady (93.75 ± 4.23%) along with the cultivation time in 40 mg-TOC/L LB broth. Fluorescence in situ hybridization showed that rare genera tended to form clusters at both concentrations, while weaker dispersal of dominant genera caused patchier biofilm structures in 10 mg-TOC/L LB broth compared to that in 40 mg-TOC/L LB broth. Null model analyses further demonstrated that the stochastic ecological drift was more pronounced in the community assembly of biofilms in 10 mg-TOC/L LB broth (73.33%) than those in 40 mg-TOC/L LB broth (60.95%), weakening the competitive superiority of dominant taxa in the patchier biofilms. In addition, the co-occurrence network reflected that the positive interactions among rare genera contributed to exclude dominant genera in 10 mg-TOC/L LB broth, whereas negative interactions only occurred between the dominant Enterobacter and Acinetobacter or rare Comamonas in 40 mg-TOC/L LB broth. This study highlighted the distinctive succession dynamics of dominant and rare genera in biofilms at different substrate concentrations, which would advance our understanding of the biofilm communities in biofilm-related process.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Siyi Pan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Jiamei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
4
|
Gubelit YI, Grossart HP. New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton? Front Microbiol 2020; 11:1275. [PMID: 32670226 PMCID: PMC7328189 DOI: 10.3389/fmicb.2020.01275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial interactions play an essential role in aquatic ecosystems and are of the great interest for both marine and freshwater ecologists. Recent development of new technologies and methods allowed to reveal many functional mechanisms and create new concepts. Yet, many fundamental aspects of microbial interactions have been almost exclusively studied for marine pelagic and benthic ecosystems. These studies resulted in a formulation of the Black Queen Hypothesis, a development of the phycosphere concept for pelagic communities, and a realization of microbial communication as a key mechanism for microbial interactions. In freshwater ecosystems, especially for periphyton communities, studies focus mainly on physiology, biodiversity, biological indication, and assessment, but the many aspects of microbial interactions are neglected to a large extent. Since periphyton plays a great role for aquatic nutrient cycling, provides the basis for water purification, and can be regarded as a hotspot of microbial biodiversity, we highlight that more in-depth studies on microbial interactions in periphyton are needed to improve our understanding on functioning of freshwater ecosystems. In this paper we first present an overview on recent concepts (e.g., the "Black Queen Hypothesis") derived from state-of-the-art OMICS methods including metagenomics, metatranscriptomics, and metabolomics. We then point to the avenues how these methods can be applied for future studies on biodiversity and the ecological role of freshwater periphyton, a yet largely neglected component of many freshwater ecosystems.
Collapse
Affiliation(s)
- Yulia I. Gubelit
- Laboratory of Freshwater Hydrobiology, Zoological Institute, Russian Academy of Science, Saint Petersburg, Russia
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|