1
|
Hutchinson J, Lu Y, Grew L, Cui T. Improved clearance of host cell protein impurities at the polishing purification step using multimodal chromatography. J Chromatogr A 2024; 1732:465229. [PMID: 39128237 DOI: 10.1016/j.chroma.2024.465229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In biotherapeutic protein production, host cell proteins (HCPs) are one of the main process related impurities which must be cleared and controlled through downstream processing. In this paper, we studied a novel therapeutic protein molecule which had a high level of HCP co-purification throughout the downstream process. Here, we focused on the polishing purification step and developed an effective strategy for improving HCP clearance using multimodal chromatography (MMC) resin, Nuvia cPrime. A high throughput process development (HTPD) workflow was used to identify the resin and process conditions which could enable significant HCP clearance while maintaining acceptable product quality and process performance. HCP analysis of gradient elution fractions on multimodal chromatography found that HCPs eluted at the beginning of the gradient, at a lower salt concentration than the therapeutic protein. Based on these findings, a step elution process involving an intermediate low salt wash was developed to clear weak-binding HCPs, while retaining the therapeutic protein on the column. This strategy was highly effective and enabled 80 % reduction in total HCP content, including some problematic and difficult to remove candidates such as Peroxiredoxin-1, Serine protease HTRA1, Clusterin and Lipoprotein lipase.
Collapse
Affiliation(s)
- Jack Hutchinson
- Purification Process Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Analytical Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Yali Lu
- Analytical Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, US
| | - Lara Grew
- Robotics and Automation, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tingting Cui
- Purification Process Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
2
|
Ito T, Lutz H, Tan L, Wang B, Tan J, Patel M, Chen L, Tsunakawa Y, Park B, Banerjee S. Host cell proteins in monoclonal antibody processing: Control, detection, and removal. Biotechnol Prog 2024; 40:e3448. [PMID: 38477405 DOI: 10.1002/btpr.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.
Collapse
Affiliation(s)
- Takao Ito
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Herb Lutz
- Independent Consultant, Sudbury, Massachusetts, USA
| | - Lihan Tan
- Life Science Services, Sigma-Aldrich Pte Ltd, Singapore, Singapore
| | - Bin Wang
- Life Science, Process Solutions, Merck Chemicals (Shanghai) Co. Ltd. (An Affiliate of Merck KGaA Darmstadt, Germany), Shanghai, China
| | - Janice Tan
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Masum Patel
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| | - Lance Chen
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Yuki Tsunakawa
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Byunghyun Park
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Seoul, South Korea
| | - Subhasis Banerjee
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| |
Collapse
|
3
|
King A, Zhao Y, Lazar A, Capron M, Thiruvur N, Liu X. Methods comparison of two-dimensional gel electrophoresis for host cell protein characterization. Biotechnol Prog 2024; 40:e3452. [PMID: 38494896 DOI: 10.1002/btpr.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
Two-dimensional electrophoresis (2DE) is a gel-based protein separation method based on size and charge which is commonly used for the characterization of host cell proteins (HCPs) during drug development in biotech and pharmaceutical companies. HCPs are a heterogenous mixture of proteins produced by host cells during a biologics drug manufacturing process. Different gel electrophoresis methods including traditional 2D SDS-PAGE with silver and SYPRO Ruby fluorescent dye staining as well as two-dimensional difference gel electrophoresis (2D-DIGE) were compared for their relative abilities to characterize HCPs. SYPRO Ruby was shown to be more sensitive than silver stain in the traditional 2D gels both with and without product protein present. Silver stain also displayed a significant preference for staining acidic proteins over basic ones while SYPRO Ruby was more consistent in imaging proteins across different isoelectric points. The non-traditional method of 2D-DIGE provides high resolution and reproducibility when comparing samples with similar protein profiles but was limited in imaging HCP spots due to its narrow dynamic range. Overall, 2DE is a powerful tool to separate and characterize HCPs and is optimized by choosing the best stain or method for each specific application. Using a combination of two or more different 2DE staining methods, when possible, provides the most comprehensive coverage to support the characterization of a complex mixture like HCPs. However, in instances where only one staining method can be used, SYPRO Ruby is shown to be the more reliable, more sensitive, and easier to use traditional staining method for most HCP-based applications.
Collapse
Affiliation(s)
- Abigail King
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| | - Yiwei Zhao
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| | - Alexandru Lazar
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| | - Margeaux Capron
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| | - Niranjan Thiruvur
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| | - Xinrong Liu
- Department of Analytical Development, Mural Oncology, Inc., Waltham, Massachusetts, USA
| |
Collapse
|
4
|
Zhao Y, Li H, Fan Z, Wang T. Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review. Curr Pharm Biotechnol 2024; 25:665-675. [PMID: 37594091 DOI: 10.2174/1389201024666230818112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.
Collapse
Affiliation(s)
- Yaru Zhao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - He Li
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Oh YH, Mendola KM, Choe LH, Min L, Lavoie AR, Sripada SA, Williams TI, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Identification and characterization of CHO host-cell proteins in monoclonal antibody bioprocessing. Biotechnol Bioeng 2024; 121:291-305. [PMID: 37877536 PMCID: PMC10842603 DOI: 10.1002/bit.28568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Ashton R Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- BPR&D, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Characterization and implications of host-cell protein aggregates in biopharmaceutical processing. Biotechnol Bioeng 2023; 120:1068-1080. [PMID: 36585356 DOI: 10.1002/bit.28325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Yang F, Li D, Kufer R, Cadang L, Zhang J, Dai L, Guo J, Wohlrab S, Greenwood-Goodwin M, Shen A, Duan D, Li H, Yuk IH. Versatile LC-MS-Based Workflow with Robust 0.1 ppm Sensitivity for Identifying Residual HCPs in Biotherapeutic Products. Anal Chem 2021; 94:723-731. [PMID: 34927411 DOI: 10.1021/acs.analchem.1c03095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Residual host cell proteins (HCPs) in the drug product can affect product quality, stability, and/or safety. In particular, highly active hydrolytic enzymes at sub-ppm levels can negatively impact the shelf life of drug products but are challenging to identify by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) due to their high dynamic range between HCPs and biotherapeutic proteins. We employed new strategies to address the challenge: (1) native digest at a high protein concentration; (2) sodium deoxycholate added during the reduction step to minimize the inadvertent omission of HCPs observed with native digestion; and (3) solid phase extraction with 50% MeCN elution prior to LC-MS/MS analysis to ensure effective mAb removal. A 50 cm long nanoflow charged surface hybrid column was also packed to allow for higher sample load for increased sensitivity. Our workflow has increased the sensitivity for HCP identification by 10- to 100-fold over previous reports and showed the robustness as low as 0.1 ppm for identifying HCPs (34.5 to 66.2 kDa MW). The method capability was further confirmed by consistently identifying >85% of 48 UPS-1 proteins (0.10 to 1.34 ppm, 6.3 to 82.9 kDa MW) in a monoclonal antibody (mAb) and the largest number (746) of mouse proteins from NIST mAb reported to date by a single analysis. Our work has filled a significant gap in HCP analysis for detecting and demonstrating HCP clearance, in particular, extremely low-level hydrolases in drug process development.
Collapse
Affiliation(s)
- Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Delia Li
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Regina Kufer
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Zhang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jia Guo
- Analytical Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Midori Greenwood-Goodwin
- Analytical Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Dana Duan
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hong Li
- Protein Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Jones M, Palackal N, Wang F, Gaza-Bulseco G, Hurkmans K, Zhao Y, Chitikila C, Clavier S, Liu S, Menesale E, Schonenbach NS, Sharma S, Valax P, Waerner T, Zhang L, Connolly T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol Bioeng 2021; 118:2870-2885. [PMID: 33930190 DOI: 10.1002/bit.27808] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these high-risk HCPs? To answer these questions, the BioPhorum Development Group HCP Workstream initiated a collaboration among its 26-company team with the goal of industry alignment around high-risk HCPs. The information gathered through literature searches, company experiences, and surveys were used to compile a list of frequently seen problematic/high-risk HCPs. These high-risk HCPs were further classified based on their potential impact into different risk categories. A step-by-step recommendation is provided for establishing a comprehensive control strategy based on risk assessments for monitoring and/or eliminating the known impurity from the process that would be beneficial to the biopharmaceutical industry.
Collapse
Affiliation(s)
- Marisa Jones
- GlaxoSmithKline, CMC Analytical, Structure & Function Characterization, Collegeville, Pennsylvania, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals Inc., Protein Biochemistry, Tarrytown, New York, USA
| | - Fengqiang Wang
- Merck & Co. Inc., Analytical Research & Development, Kenilworth, New Jersey, USA
| | | | - Karen Hurkmans
- AbbVie Bioresearch Center, Protein Analytics, Worcester, Massachusetts, USA
| | - Yiwei Zhao
- Takeda Pharmaceuticals, Pharmaceutical science, Cambridge, Massachusetts, USA
| | - Carmelata Chitikila
- Janssen R&D LLC, BioTherapeutics Development and Supply, Analytical Development, Bioassay Methods Development, Malvern, Pennsylvania, USA
| | - Severine Clavier
- Sanofi R&D, BioAnalytics, Biologics Development, Vitry-sur-seine, France
| | - Suli Liu
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Emily Menesale
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Nicole S Schonenbach
- Pfizer, Downstream Process Development, Bioprocess R&D, Chesterfield, Missouri, USA
| | - Satish Sharma
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Pascal Valax
- Merck KGaA, Global Healthcare Operations, Development and Launch, Biotech Process Sciences, Merck BioDevelopment, Martillac, France
| | - Thomas Waerner
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Analytical Development, Biologicals, Biberach, Germany
| | - Lei Zhang
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Trish Connolly
- Development Group Phorum, BioPhorum, The Gridiron building, One Pancras Square, London, UK
| |
Collapse
|
9
|
Li X, An Y, Liao J, Xiao L, Swanson M, Martinez-Fonts K, Pavon JA, Sherer EC, Jawa V, Wang F, Gao X, Letarte S, Richardson DD. Identification and characterization of a residual host cell protein hexosaminidase B associated with N-glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product. Biotechnol Prog 2021; 37:e3128. [PMID: 33476097 PMCID: PMC8365702 DOI: 10.1002/btpr.3128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
Host cell proteins (HCPs) are process‐related impurities derived from host organisms, which need to be controlled to ensure adequate product quality and safety. In this study, product quality attributes were tracked for several monoclonal antibodies (mAbs) under the intended storage and accelerated stability conditions. One product quality attribute not expected to be stability indicating is the N‐glycan heterogeneity profile. However, significant N‐glycan degradation was observed for one mAb under accelerated and stressed stability conditions. The root cause for this instability was attributed to hexosaminidase B (HEXB), an enzyme known to remove terminal N‐acetylglucosamine (GlcNAc). HEXB was identified by liquid chromatography–mass spectrometry (LC–MS)‐based proteomics approach to be enriched in the impacted stability batches from mAb‐1. Subsequently, enzymatic and targeted multiple reaction monitoring (MRM) MS assays were developed to support process and product characterization. A potential interaction between HEXB and mAb‐1 was initially observed from the analysis of process intermediates by proteomics among several mAbs and later supported by computational modeling. An improved bioprocess was developed to significantly reduce HEXB levels in the final drug substance. A risk assessment was conducted by evaluating the in silico immunogenicity risk and the impact on product quality. To the best of our knowledge, HEXB is the first residual HCP reported to have impact on the glycan profile of a formulated drug product. The combination of different analytical tools, mass spectrometry, and computational modeling provides a general strategy on how to study residual HCP for biotherapeutics development.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yan An
- Biologics Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jing Liao
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Li Xiao
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Michael Swanson
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jorge Alexander Pavon
- Biologics Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Edward C Sherer
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Vibha Jawa
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Fengqiang Wang
- Biologics Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Xinliu Gao
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Simon Letarte
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
10
|
Molden R, Hu M, Yen E S, Saggese D, Reilly J, Mattila J, Qiu H, Chen G, Bak H, Li N. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs 2021; 13:1955811. [PMID: 34365906 PMCID: PMC8354607 DOI: 10.1080/19420862.2021.1955811] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
Therapeutic proteins including monoclonal antibodies (mAbs) are usually produced in engineered host cell lines that also produce thousands of endogenous proteins at varying levels. A critical aspect of the development of biotherapeutics manufacturing processes is the removal of these host cell proteins (HCP) to appropriate levels in order to minimize risk to patient safety and drug efficacy. During the development process and associated analytical characterization, mass spectrometry (MS) has become an increasingly popular tool for HCP analysis due to its ability to provide both relative abundance and identity of individual HCP and because the method does not rely on polyclonal antibodies, which are used in enzyme-linked immunosorbent assays. In this study, HCP from 29 commercially marketed mAb and mAb-based therapeutics were profiled using liquid chromatography (LC)-MS/MS with the identification and relative quantification of 79 individual HCP in total. Excluding an outlier drug, the relative levels of individual HCP determined in the approved therapeutics were generally low, with an average of 20 ppm (µmol HCP/mol drug) measured by LC-MS/MS, and only a few (<7 in average) HCP were identified in each drug analyzed. From this analysis, we also gained knowledge about which HCP are frequently identified in mAb-based products and their typical levels relative to the drugs for the identified individual HCP. In addition, we examined HCP composition from antibodies produced in house and found our current development process brings HCP to levels that are consistent with marketed drugs. Finally, we described a specific case to demonstrate how the HCP information from commercially marketed drugs could inform future HCP analyses.
Collapse
Affiliation(s)
- Rosalynn Molden
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Mengqi Hu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Sook Yen E
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Diana Saggese
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - James Reilly
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - John Mattila
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gang Chen
- Protein Expression Sciences, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| |
Collapse
|