1
|
Zhang C, Fu Y, Zheng W, Chang F, Shen Y, Niu J, Wang Y, Ma X. Enhancing the Antibody Production Efficiency of Chinese Hamster Ovary Cells through Improvement of Disulfide Bond Folding Ability and Apoptosis Resistance. Cells 2024; 13:1481. [PMID: 39273052 PMCID: PMC11394227 DOI: 10.3390/cells13171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the cell will shut down protein translation and ultimately induce apoptosis. We co-overexpressed HsQSOX1b and survivin proteins in the antibody-producing cell line CHO-PAb to obtain a new cell line, CHO-PAb-QS. Compared with CHO-PAb cells, the survival time of CHO-PAb-QS cells in batch culture was extended by 2 days, and the antibody accumulation and productivity were increased by 52% and 45%, respectively. The proportion of (HC-LC)2 was approximately doubled in the CHO-PAb-QS cells, which adapted to the accelerated disulfide bond folding capacity by upregulating the UPR's strength and increasing the ER content. The results of the apoptosis assays indicated that the CHO-PAb-QS cell line exhibited more excellent resistance to apoptosis induced by ER stress. Finally, CHO-PAb-QS cells exhibited mild oxidative stress but did not significantly alter the redox status. This study demonstrated that strategies based on HsQSOX1b and survivin co-overexpression could facilitate protein disulfide bond folding and anti-apoptosis ability, enhancing antibody production efficiency in CHO cell lines.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yue Shen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Jinping Niu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yangmin Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| |
Collapse
|
2
|
Martínez VS, Rodriguez K, McCubbin T, Tong J, Mahler S, Shave E, Baker K, Munro TP, Marcellin E. Amino acid degradation pathway inhibitory by-products trigger apoptosis in CHO cells. Biotechnol J 2024; 19:e2300338. [PMID: 38375561 DOI: 10.1002/biot.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Karen Rodriguez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Timothy McCubbin
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| | - Junjie Tong
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Evan Shave
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Trent P Munro
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- National Biologics Facility, The University of Queensland, St Lucia, Queensland, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Nguyen M, Zimmer A. A reflection on the improvement of Chinese Hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 2023; 65:108141. [PMID: 37001570 DOI: 10.1016/j.biotechadv.2023.108141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host for the large-scale production of recombinant proteins in the biopharmaceutical industry. Research endeavors have been directed to the optimization of CHO-based bioprocesses to increase protein quantity and quality, often in an empirical manner. To provide a rationale for those achievements, a myriad of CHO proteomic studies has arisen in recent decades. This review gives an overview of significant advances in LC-MS-based proteomics and sheds light on CHO proteomic studies, with a particular focus on CHO cells with superior bioprocessing phenotypes (growth, viability, titer, productivity and cQA), that have exploited novel proteomic or sub-omic techniques. These proteomic findings expand the current knowledge and understanding about the underlying protein clusters, protein regulatory networks and biological pathways governing such phenotypic changes. The proteomic studies, highlighted herein, will help in the targeted modulation of these cell factories to the desired needs.
Collapse
|
4
|
Insights into the Impact of Rosmarinic Acid on CHO Cell Culture Improvement through Transcriptomics Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The use of antioxidants in Chinese hamster ovary (CHO) cell cultures to improve monoclonal antibody production has been a topic of great interest. Nevertheless, the antioxidants do not have consistent benefits of production improvement, which might be cell line specific and/or process specific. In this work, we investigated how treatment with the antioxidant rosmarinic acid (RA) improved cell growth and titer in CHO cell cultures using transcriptomics. In particular, transcriptomics analysis indicated that RA treatment modified gene expression and strongly affected the MAPK and PI3K/Akt signaling pathways, which regulate cell survival and cell death. Moreover, it was observed that these signaling pathways, which had been identified to be up-regulated on day 2 and day 6 by RA, were also up-regulated over time (from initial growth phase day 2 to slow growth or protein production phase day 6) in both conditions. In summary, this transcriptomics analysis provides insights into the role of the antioxidant RA in industrial cell culture processes. The current study also represents an example in the industry of how omics can be applied to gain an in-depth understanding of CHO cell biology and to identify critical pathways that can contribute to cell culture process improvement and cell line engineering.
Collapse
|
5
|
MacDonald MA, Nöbel M, Martínez VS, Baker K, Shave E, Gray PP, Mahler S, Munro T, Nielsen LK, Marcellin E. Engineering death resistance in CHO cells for improved perfusion culture. MAbs 2022; 14:2083465. [PMID: 35737825 PMCID: PMC9235890 DOI: 10.1080/19420862.2022.2083465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reliable and cost-efficient manufacturing of monoclonal antibodies (mAbs) is essential to fulfil their ever-growing demand. Cell death in bioreactors reduces productivity and product quality, and is largely attributed to apoptosis. In perfusion bioreactors, this leads to the necessity of a bleed stream, which negatively affects the overall process economy. To combat this limitation, death-resistant Chinese hamster ovary cell lines were developed by simultaneously knocking out the apoptosis effector proteins Bak1, Bax, and Bok with CRISPR technology. These cell lines were cultured in fed-batch and perfusion bioreactors and compared to an unmodified control cell line. In fed-batch, the death-resistant cell lines showed higher cell densities and longer culture durations, lasting nearly a month under standard culture conditions. In perfusion, the death-resistant cell lines showed slower drops in viability and displayed an arrest in cell division after which cell size increased instead. Pertinently, the death-resistant cell lines demonstrated the ability to be cultured for several weeks without bleed, and achieved similar volumetric productivities at lower cell densities than that of the control cell line. Perfusion culture reduced fragmentation of the mAb produced, and the death-resistant cell lines showed increased glycosylation in the light chain in both bioreactor modes. These data demonstrate that rationally engineered death-resistant cell lines are ideal for mAb production in perfusion culture, negating the need to bleed the bioreactor whilst maintaining product quantity and quality.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Peter P Gray
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,National Biologics Facility, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Lars K Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,Queensaldn Metabolomics and Proteomics, The University of Queensland, Saint Lucia, Queensland, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,Queensaldn Metabolomics and Proteomics, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|