1
|
Zhang B, Liu J, Cai C, Zhou Y. Membrane photobioreactor for biogas capture and conversion - Enhanced microbial interaction in biofilm. BIORESOURCE TECHNOLOGY 2025; 418:131999. [PMID: 39706307 DOI: 10.1016/j.biortech.2024.131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The urgency to mitigate greenhouse gas emissions has driven interest in sustainable biogas utilization. This study investigates a 1 L enclosed membrane photobioreactor (MPBR) using a microalgae-methanotroph coculture for biogas capture. Operating with a hydraulic and solid retention time of 7 days and a biogas loading rate of 2.7 L /day, the introduction of gas membrane module increased CO2-C and CH4-C uptake rates by 12 % and 50 %, respectively. Biofilm formation on the membrane surface enhanced system performance, with imaging analyses revealing methanotroph predominantly located near the membrane surface and photosynthetic microorganisms distributed throughout. Metagenomic analysis showed shifts in key metabolic pathways, including increased abundance of soluble methane monooxygenase genes and enhanced vitamin B synthesis in the biofilm. These findings highlight the spatial organization and metabolic interactions in methanotroph-microalgae coculture system, providing insights into the role of membrane-induced biofilms in improving MPBR performance for sustainable biogas utilization.
Collapse
Affiliation(s)
- Baorui Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jianbo Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Yan Zhou
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
2
|
Zhang B, Cai C, Zhou Y. Iron and nitrogen regulate carbon transformation in a methanotroph-microalgae system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166287. [PMID: 37591392 DOI: 10.1016/j.scitotenv.2023.166287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Nutrient supply is important for maintaining a methanotroph and microalgae (MOB-MG) system for biogas valorization. However, there is a lack of understanding regarding how key elements regulate the growth of a MOB-MG coculture. In this study, a MOB-MG coculture with high protein content (0.47 g/g biomass) was established from waste activated sludge using synthetic biogas. An increase in iron availability substantially stimulated the specific growth rate (from 0.18 to 0.62 day-1) and biogas conversion rate (from 26.81 to 106.57 mg-C L-1 day-1) of the coculture. Moreover, the protein content remained high (0.51 g/g biomass), and the total lipid content increased (from 0.09 to 0.14 g/g biomass). Nitrogen limitation apparently constrained the specific growth rate (from 0.64 to 0.28 day-1) and largely reduced the protein content (from 0.51 to 0.31 g/g biomass) of the coculture. Intriguingly, the lipid content remained unchanged after nitrogen was depleted. The eukaryotic community was consistently dominated by MG belonging to Chlorella, while the populations of MOB shifted from Methylococcus/Methylosinus to Methylocystis due to iron and nitrogen amendment. In addition, diverse non-methanotrophic heterotrophs were present in the community. Their presence neither compromised the performance of the coculture system nor affected the protein content of the biomass. However, these heterotrophs may contribute to high carbon conversion efficiency by utilizing the dissolved organic carbon released by MOB and MG. Overall, the findings highlight the vital roles of iron and nitrogen in achieving efficient conversion of biogas, fast growth of cells, and optimal biomass composition in a MOB-MG coculture system.
Collapse
Affiliation(s)
- Baorui Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Chen Cai
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
3
|
Li X, Lu Y, Li N, Wang Y, Yu R, Zhu G, Zeng RJ. Mixotrophic Cultivation of Microalgae Using Biogas as the Substrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3669-3677. [PMID: 35239322 DOI: 10.1021/acs.est.1c06831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biogas utilization through biotechnology represents a potential and novel technology. We propose the microalgal mixotrophic cultivation to convert biogas to microalgae-based biodiesel, in which methanotroph was co-cultured to convert CH4 to organic intermediate (and CO2) for microalgal mixotrophic growth. This study constructed a co-culture of Methylocystis bryophila (methanotroph) and Scenedesmus obliquus (microalgae) with biogas feeding. Compared with the single culture of S. obliquus, higher microalgal biomass but a lower chlorophyll concentration was observed. The organic metabolism-related genes were upregulated, verifying microalgal mixotrophic growth. The stoichiometric calculation of M. bryophila culture shows that M. bryophila tends to release organic matter rather than grow under a low O2 content. M. bryophila rarely grew under five different light intensities, indicating that M. bryophila acts as a biocatalyst in the co-culture. The organic intermediate released by methanotroph increased the maximum biomass of microalgal culture, accelerated nitrogen absorption, accumulated more monounsaturated fatty acids, and improved the adaptation to light. The co-culture of microalgae and methanotroph may provide new opportunities for microalgae-based biodiesel production using biogas as a substrate.
Collapse
Affiliation(s)
- Xin Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongzhen Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Ran Yu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Badr K, He QP, Wang J. Matlab implementation of a novel semi-structured kinetic model for methanotroph-photoautotroph cocultures. MethodsX 2022; 9:101652. [PMID: 35295538 PMCID: PMC8918855 DOI: 10.1016/j.mex.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022] Open
Abstract
This paper presents the matlab implementation details of a novel semi-structured kinetic model for methanotroph-photoautotroph cocultures. This includes the parameterization of the modeling equations, and the initialization of the simulation based on experimental conditions. More importantly, it provides details on how the differential equations governing mass balances in both gas and liquid phases are integrated together to simulate the system dynamics over time. The semi-structured kinetic model for methanotroph-photoautotroph coculture is validated using a wide range of experimental conditions. The model:Accurately predicts both the coculture growth in liquid phase and the gas composition changes in head space over time. Explicitly models the exchange of in situ produced O2 and CO2 within the coculture. Considers the self-shading effect on the growth of photoautotroph.
Collapse
|