1
|
Yang X, Xiao W, Le Q, Zhang Z, Wang W, Lee SH, Dighe A, Kerrigan JR, Cui Q. Knockout of formyl peptide receptor 1 reduces osteogenesis and bone healing. Life Sci 2024; 344:122583. [PMID: 38508232 DOI: 10.1016/j.lfs.2024.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
AIMS Formyl peptide receptor 1 (FPR1), from a G-protein coupled receptor family, was previously well-characterized in immune cells. But the function of FPR1 in osteogenesis and fracture healing was rarely reported. This study, using the FPR1 knockout (KO) mouse, is one of the first studies that try to investigate FPR1 function to osteogenic differentiation of bone marrow-derived stem cells (BMSCs) in vitro and bone fracture healing in vivo. MATERIALS AND METHODS Primary BMSCs were isolated from both FPR1 KO and wild type (WT) mice. Cloned mouse BMSCs (D1 cells) were used to examine role of FoxO1 in FPR1 regulation of osteogenesis. A closed, transverse fracture at the femoral midshaft was created to compare bone healing between KO and WT mice. Biomechanical and structural properties of femur were compared between healthy WT and KO mice. KEY FINDINGS FPR1 expression increased significantly during osteogenesis of both primary and cloned BMSCs. Compared to BMSCs from FPR1 KO mice, WT BMSCs displayed considerably higher levels of osteogenic markers as well as mineralization. Osteogenesis by D1 cells was inhibited by either an FPR1 antagonist cFLFLF or a specific inhibitor of FoxO1, AS1842856. In addition, the femur from WT mice had better biomechanical properties than FPR1 KO mice. Furthermore, bone healing in WT mice was remarkably improved compared to FPR1 KO mice analyzed by X-ray and micro-CT. SIGNIFICANCE These findings indicated that FPR1 played a vital role in osteogenic differentiation and regenerative capacity of fractured bone, probably through the activation of FoxO1 related signaling pathways.
Collapse
Affiliation(s)
- Xinlin Yang
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Wan'an Xiao
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA; Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Quang Le
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Zhichang Zhang
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA; Dept of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Wehui 453100, Henan, China
| | - Weicheng Wang
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Sang-Hyun Lee
- Dept of Mechanical & Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Abhijit Dighe
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jason R Kerrigan
- Dept of Mechanical & Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Quanjun Cui
- Dept of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Zhao J, Lu F, Dong Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 2024; 21:395-408. [PMID: 38032533 PMCID: PMC10987464 DOI: 10.1007/s13770-023-00607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem. METHODS This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE. RESULTS Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies. CONCLUSION Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
5
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
6
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
7
|
Ashkarran AA, Gharibi H, Zeki DA, Radu I, Khalighinejad F, Keyhanian K, Abrahamsson CK, Ionete C, Saei AA, Mahmoudi M. Multi-omics analysis of magnetically levitated plasma biomolecules. Biosens Bioelectron 2023; 220:114862. [PMID: 36403493 PMCID: PMC9750732 DOI: 10.1016/j.bios.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
We recently discovered that superparamagnetic iron oxide nanoparticles (SPIONs) can levitate plasma biomolecules in the magnetic levitation (MagLev) system and cause formation of ellipsoidal biomolecular bands. To better understand the composition of the levitated biomolecules in various bands, we comprehensively characterized them by multi-omics analyses. To probe whether the biomolecular composition of the levitated ellipsoidal bands correlates with the health of plasma donors, we used plasma from individuals who had various types of multiple sclerosis (MS), as a model disease with significant clinical importance. Our findings reveal that, while the composition of proteins does not show much variability, there are significant differences in the lipidome and metabolome profiles of each magnetically levitated ellipsoidal band. By comparing the lipidome and metabolome compositions of various plasma samples, we found that the levitated biomolecular ellipsoidal bands do contain information on the health status of the plasma donors. More specifically, we demonstrate that there are particular lipids and metabolites in various layers of each specific plasma pattern that significantly contribute to the discrimination of different MS subtypes, i.e., relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), and primary-progressive MS (PPMS). These findings will pave the way for utilization of MagLev of biomolecules in biomarker discovery for identification of diseases and discrimination of their subtypes.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden
| | - Dalia Abou Zeki
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | - Irina Radu
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | | | - Kiandokht Keyhanian
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Carolina Ionete
- Department of Neurology, University of Massachusetts, Worcester, MA, USA.
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Byun H, Lee S, Jang GN, Lee H, Park S, Shin H. Magnetism-controlled assembly of composite stem cell spheroids for the biofabrication of contraction-modulatory 3D tissue. Biofabrication 2021; 14. [PMID: 34670209 DOI: 10.1088/1758-5090/ac318b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Biofabrication of organ-like engineered 3D tissue through the assembly of magnetized 3D multi-cellular spheroids has been recently investigated in tissue engineering. However, the cytotoxicity of magnetic nanoparticles (MNPs) and contraction-induced structural deformation of the constructs have been major limitations. In this study, we developed a method to fabricate composite stem cell spheroids using MNP-coated fibers, alleviating MNP-mediated toxicity and controlling structural assembly under external magnetic stimuli. The MNP-coated synthetic fibers (MSFs) were prepared by coating various amounts of MNPs on the fibers via electrostatic interactions. The MSFs showed magnetic hysteresis and no cytotoxicity on 2D-cultured adipose-derived stem cells (ADSCs). The composite spheroids containing MSFs and ADSCs were rapidly formed in which the amount of impregnated MSFs modulated the spheroid size. The fusion ofin vitrocomposite spheroids was then monitored at the contacting interface; the fused spheroids with over 10μg of MSF showed minimal contraction after 7 d, retaining around 90% of total area ratio regardless of the number of cells, indicating that the presence of fibers within the composite spheroid supported its structural maintenance. The fusion of MSF spheroids was modulated by external magnetic stimulation, and the effect of magnetic force on the movement and fusion of the spheroids was investigated using COMSOL simulation. Finally, ring and lamellar structures were successfully assembled using remote-controlled MSF spheroids, showing limited deformation and high viability up to 50 d duringin vitroculture. In addition, the MSFs demonstrated no adverse effects on ADSC osteochondral differentiation. Altogether, we envision that our magnetic assembly system would be a promising method for the tissue engineering of structurally controlled organ-like constructs.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Gyu Nam Jang
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyoryong Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang Daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Sukho Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang Daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Anil-Inevi M, Delikoyun K, Mese G, Tekin HC, Ozcivici E. Magnetic levitation assisted biofabrication, culture, and manipulation of 3D cellular structures using a ring magnet based setup. Biotechnol Bioeng 2021; 118:4771-4785. [PMID: 34559409 DOI: 10.1002/bit.27941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022]
Abstract
Diamagnetic levitation is an emerging technology for remote manipulation of cells in cell and tissue level applications. Low-cost magnetic levitation configurations using permanent magnets are commonly composed of a culture chamber physically sandwiched between two block magnets that limit working volume and applicability. This work describes a single ring magnet-based magnetic levitation system to eliminate physical limitations for biofabrication. Developed configuration utilizes sample culture volume for construct size manipulation and long-term maintenance. Furthermore, our configuration enables convenient transfer of liquid or solid phases during the levitation. Before biofabrication, we first calibrated/ the platform for levitation with polymeric beads, considering the single cell density range of viable cells. By taking advantage of magnetic focusing and cellular self-assembly, millimeter-sized 3D structures were formed and maintained in the system allowing easy and on-site intervention in cell culture with an open operational space. We demonstrated that the levitation protocol could be adapted for levitation of various cell types (i.e., stem cell, adipocyte and cancer cell) representing cells of different densities by modifying the paramagnetic ion concentration that could be also reduced by manipulating the density of the medium. This technique allowed the manipulation and merging of separately formed 3D biological units, as well as the hybrid biofabrication with biopolymers. In conclusion, we believe that this platform will serve as an important tool in broad fields such as bottom-up tissue engineering, drug discovery and developmental biology.
Collapse
Affiliation(s)
- Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Kerem Delikoyun
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
10
|
Delikoyun K, Yaman S, Yilmaz E, Sarigil O, Anil-Inevi M, Telli K, Yalcin-Ozuysal O, Ozcivici E, Tekin HC. HologLev: A Hybrid Magnetic Levitation Platform Integrated with Lensless Holographic Microscopy for Density-Based Cell Analysis. ACS Sens 2021; 6:2191-2201. [PMID: 34124887 DOI: 10.1021/acssensors.0c02587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In clinical practice, a variety of diagnostic applications require the identification of target cells. Density has been used as a physical marker to distinguish cell populations since metabolic activities could alter the cell densities. Magnetic levitation offers great promise for separating cells at the single cell level within heterogeneous populations with respect to cell densities. Traditional magnetic levitation platforms need bulky and precise optical microscopes to visualize levitated cells. Moreover, the evaluation process of cell densities is cumbersome, which also requires trained personnel for operation. In this work, we introduce a device (HologLev) as a fusion of the magnetic levitation principle and lensless digital inline holographic microscopy (LDIHM). LDIHM provides ease of use by getting rid of bulky and expensive optics. By placing an imaging sensor just beneath the microcapillary channel without any lenses, recorded holograms are processed for determining cell densities through a fully automated digital image processing scheme. The device costs less than $100 and has a compact design that can fit into a pocket. We perform viability tests on the device by levitating three different cell lines (MDA-MB-231, U937, D1 ORL UVA) and comparing them against their dead correspondents. We also tested the differentiation of mouse osteoblastic (7F2) cells by monitoring characteristic variations in their density. Last, the response of MDA-MB-231 cancer cells to a chemotherapy drug was demonstrated in our platform. HologLev provides cost-effective, label-free, fully automated cell analysis in a compact design that could be highly desirable for laboratory and point-of-care testing applications.
Collapse
Affiliation(s)
- Kerem Delikoyun
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Sena Yaman
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Esra Yilmaz
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Oyku Sarigil
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Muge Anil-Inevi
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Kubra Telli
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Ozden Yalcin-Ozuysal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Engin Ozcivici
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - H. Cumhur Tekin
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
- METU MEMS Center, Ankara 06520, Turkey
| |
Collapse
|