1
|
São Pedro MN, Eppink MHM, Ottens M. Application of a fluorescent dye-based microfluidic sensor for real-time detection of mAb aggregates. Biotechnol Prog 2024; 40:e3355. [PMID: 37161718 DOI: 10.1002/btpr.3355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
The lack of process analytical technologies able to provide real-time information and process control over a biopharmaceutical process has long impaired the transition to continuous biomanufacturing. For the monoclonal antibody (mAb) production, aggregate formation is a major critical quality attribute (CQA) with several known process parameters (i.e., protein concentration and agitation) influencing this phenomenon. The development of a real-time tool to monitor aggregate formation is then crucial to gain control and achieve a continuous processing. Due to an inherent short operation time, miniaturized biosensors placed after each step can be a powerful solution. In this work, the development of a fluorescent dye-based microfluidic sensor for fast at-line PAT is described, using fluorescent dyes to examine possible mAb size differences. A zigzag microchannel, which provides 90% of mixing efficiency under 30 s, coupled to an UV-Vis detector, and using four FDs, was studied and validated. With different generated mAb aggregation samples, the FDs Bis-ANS and CCVJ were able to robustly detect from, at least, 2.5% to 10% of aggregation. The proposed FD-based micromixer is then ultimately implemented and validated in a lab-scale purification system, demonstrating the potential of a miniaturized biosensor to speed up CQAs measurement in a continuous process.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Michel H M Eppink
- Byondis B.V., Nijmegen, The Netherlands
- Bioprocessing Engineering, Wageningen University, Wageningen, The Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
2
|
Dorn M, Klottrup-Rees K, Lee K, Micheletti M. Platform development for high-throughput optimization of perfusion processes: Part I: Implementation of cell bleeds in microwell plates. Biotechnol Bioeng 2024; 121:1759-1773. [PMID: 38393309 DOI: 10.1002/bit.28682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The promise of continuous processing to increase yields and improve product quality of biopharmaceuticals while decreasing the manufacturing footprint is transformative. Developing and optimizing perfusion operations requires screening various parameters, which is expensive and time-consuming when using benchtop bioreactors. Scale-down models (SDMs) are the most feasible option for high-throughput data generation and condition screening. However, new SDMs mimicking perfusion are required, enabling experiments to be run in parallel. In this study, a method using microwell plates (MWP) operating in semi-perfusion mode with an implemented cell bleed step is presented. A CHO cell line was cultivated in a 24-well MWP (Vw = 1.2 mL) and grown at four high cell density (HCD) setpoints. Quasi steady-state condition was obtained by manually performing cell bleeds followed by a total medium exchange after centrifugation. Further, two HCD setpoints were scaled up (VW = 30 mL), comparing a squared six-well deepwell plate (DWP) to shake flasks (SF). This evaluation showed comparable results between systems (DWP vs. SF) and scales (MWP vs. DWP + SF). The results show that the well-plate-based methods are suitable to perform HCD and quasi steady-state cultivations providing a robust solution to industrially relevant challenges such as cell clone and media selection.
Collapse
Affiliation(s)
- Marie Dorn
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Kerensa Klottrup-Rees
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Ken Lee
- BioProcess Technologies and Engineering, Biopharmaceutical Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Martina Micheletti
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| |
Collapse
|
3
|
Sakaki A, Namatame T, Nakaya M, Omasa T. Model-based control system design to manage process parameters in mammalian cell culture for biopharmaceutical manufacturing. Biotechnol Bioeng 2024; 121:605-617. [PMID: 37960996 DOI: 10.1002/bit.28593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
To enhance the robustness and flexibility of biopharmaceutical manufacturing, a paradigm shift toward methods of continuous processing, such as perfusion, and fundamental technologies for high-throughput process development are being actively investigated. The continuous upstream process must establish an advanced control strategy to ensure a "State of Control" before operation. Specifically, feedforward and feedback control must address the complex fluctuations that occur during the culture process and maintain critical process parameters in appropriate states. However, control system design for industry-standard mammalian cell culture processes is still often performed in a laborious trial-and-error manner. This paper provides a novel control approach in which controller specifications to obtain desired control characteristics can be determined systematically by combining a culture model with control theory. In the proposed scheme, control conditions, such as PID parameters, can be specified mechanistically based on process understanding and control requirements without qualitative decision making or specific preliminary experiments. The effectiveness of the model-based control algorithm was verified by control simulations assuming perfusion Chinese hamster ovary culture. As a tool to assist in the development of control strategies, this study will reduce the high operational workload that is a serious problem in continuous culture and facilitate the digitalization of bioprocesses.
Collapse
Affiliation(s)
- Ayumu Sakaki
- Innovation Center, Marketing Headquarters, Yokogawa Electric Corporation, Tokyo, Japan
| | - Tetsushi Namatame
- Innovation Center, Marketing Headquarters, Yokogawa Electric Corporation, Tokyo, Japan
| | - Makoto Nakaya
- Innovation Center, Marketing Headquarters, Yokogawa Electric Corporation, Tokyo, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Drobnjakovic M, Hart R, Kulvatunyou BS, Ivezic N, Srinivasan V. Current challenges and recent advances on the path towards continuous biomanufacturing. Biotechnol Prog 2023; 39:e3378. [PMID: 37493037 DOI: 10.1002/btpr.3378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Continuous biopharmaceutical manufacturing is currently a field of intense research due to its potential to make the entire production process more optimal for the modern, ever-evolving biopharmaceutical market. Compared to traditional batch manufacturing, continuous bioprocessing is more efficient, adjustable, and sustainable and has reduced capital costs. However, despite its clear advantages, continuous bioprocessing is yet to be widely adopted in commercial manufacturing. This article provides an overview of the technological roadblocks for extensive adoptions and points out the recent advances that could help overcome them. In total, three key areas for improvement are identified: Quality by Design (QbD) implementation, integration of upstream and downstream technologies, and data and knowledge management. First, the challenges to QbD implementation are explored. Specifically, process control, process analytical technology (PAT), critical process parameter (CPP) identification, and mathematical models for bioprocess control and design are recognized as crucial for successful QbD realizations. Next, the difficulties of end-to-end process integration are examined, with a particular emphasis on downstream processing. Finally, the problem of data and knowledge management and its potential solutions are outlined where ontologies and data standards are pointed out as key drivers of progress.
Collapse
Affiliation(s)
- Milos Drobnjakovic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Roger Hart
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, New Jersey, USA
| | - Boonserm Serm Kulvatunyou
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nenad Ivezic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Vijay Srinivasan
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
5
|
São Pedro MN, Isaksson M, Gomis-Fons J, Eppink MHM, Nilsson B, Ottens M. Real-time detection of mAb aggregates in an integrated downstream process. Biotechnol Bioeng 2023; 120:2989-3000. [PMID: 37309984 DOI: 10.1002/bit.28466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
The implementation of continuous processing in the biopharmaceutical industry is hindered by the scarcity of process analytical technologies (PAT). To monitor and control a continuous process, PAT tools will be crucial to measure real-time product quality attributes such as protein aggregation. Miniaturizing these analytical techniques can increase measurement speed and enable faster decision-making. A fluorescent dye (FD)-based miniaturized sensor has previously been developed: a zigzag microchannel which mixes two streams under 30 s. Bis-ANS and CCVJ, two established FDs, were employed in this micromixer to detect aggregation of the biopharmaceutical monoclonal antibody (mAb). Both FDs were able to robustly detect aggregation levels starting at 2.5%. However, the real-time measurement provided by the microfluidic sensor still needs to be implemented and assessed in an integrated continuous downstream process. In this work, the micromixer is implemented in a lab-scale integrated system for the purification of mAbs, established in an ÄKTA™ unit. A viral inactivation and two polishing steps were reproduced, sending a sample of the product pool after each phase directly to the microfluidic sensor for aggregate detection. An additional UV sensor was connected after the micromixer and an increase in its signal would indicate that aggregates were present in the sample. The at-line miniaturized PAT tool provides a fast aggregation measurement, under 10 min, enabling better process understanding and control.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | - Michel H M Eppink
- Byondis B. V., Nijmegen, The Netherlands
- Bioprocessing Engineering, Wageningen University, Wageningen, The Netherlands
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
6
|
Jing SY, Shi C, Gao D, Wang HB, Yao SJ, Lin DQ. Improved process design for monoclonal antibody charge variants separation with multicolumn counter-current solvent gradient purification. J Chromatogr A 2023; 1707:464292. [PMID: 37586302 DOI: 10.1016/j.chroma.2023.464292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The multicolumn counter-current solvent gradient purification (MCSGP) method has proven effective in addressing the issue of elution profile overlap for difficult-to-separate proteins, leading to improved purity and recovery. However, during the MCSGP process, the flow rate and proportion of loaded proteins undergo changes, causing a significant discrepancy between the elution profiles of batch process design and the actual MCSGP process. This mismatch negatively impacts the purity and recovery of the target protein. To address this challenge, an improved process design (reDesign) was proposed with the first-run MCSGP to mimic the actual continuous process and obtain elution profiles that closely resemble the real ones. The reDesign was demonstrated with both a model protein mixture and a sample of monoclonal antibody (mAb) with charge variants. For model protein mixture, the reDesign-based MCSGP process (reMCSGP) showed a remarkable improvement in recovery, increasing from 83.6% to 97.8% while maintaining a purity of more than 95%. For mAb sample, the recovery of reMCSGP improved significantly to 93.9%, surpassing the performance of normal MCSGP processes at a given purity level of more than 84%. In general, the new process design strategy developed in this work could generate a more representative elution profile that closely mirrors actual conditions in continuous processes, which enhances the separation performance of MCSGP.
Collapse
Affiliation(s)
- Shu-Ying Jing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong Gao
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Hai-Bin Wang
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
São Pedro MN, Santos MS, Eppink MHM, Ottens M. Design of a microfluidic mixer channel: First steps into creating a fluorescent dye-based biosensor for mAb aggregate detection. Biotechnol J 2023; 18:e2200332. [PMID: 36330557 DOI: 10.1002/biot.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in the transition to continuous biomanufacturing is the lack of process analytical technology (PAT) tools which are able to collect real-time information on the process and elicit a response to facilitate control. One of the critical quality attributes (CQAs) of interest during monoclonal antibodies production is aggregate formation. The development of a real-time PAT tool to monitor aggregate formation is then crucial to have immediate feedback and process control. Miniaturized sensors placed after each unit operation can be a powerful solution to speed up an analytical measurement due to their characteristic short reaction time. In this work, a micromixer structure capable of mixing two streams is presented, to be employed in the detection of mAb aggregates using fluorescent dyes. Computational fluid dynamics (CFD) simulations were used to compare the mixing performance of a series of the proposed designs. A final design of a zigzag microchannel with 45° angle was reached and this structure was subsequently fabricated and experimentally validated with colour dyes and, later, with a FITC-IgG molecule. The designed zigzag micromixer presents a mixing index of around 90%, obtained in less than 30 seconds. Therefore, a micromixer channel capable of a fast and efficient mixing is hereby demonstrated, to be used as a real-time PAT tool for a fluorescence based detection of protein aggregation.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mafalda S Santos
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Michel H M Eppink
- Byondis B.V., Nijmegen, the Netherlands.,Bioprocessing Engineering, Wageningen University, Wageningen, the Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
8
|
Matanguihan C, Wu P. Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing. Curr Opin Biotechnol 2022; 78:102828. [PMID: 36332340 DOI: 10.1016/j.copbio.2022.102828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Upstream continuous processing, or most commonly perfusion processing, for biopharmaceutical production, is emerging as a feasible and viable manufacturing approach. Development in production of recombinant therapeutic proteins as well as viral vectors, vaccines, and cell therapy products, has numerous research publications that came out in previous years. Recent research areas are in perfusion-operation strategies maximizing and controlling bioreactor cell density, adding feed solution designed to supplement basal medium feed stream, combining cell line engineering with bioreactor conditions such as hypoxia, and implementing online process monitoring of cell density by capacitance sensor and metabolites by Raman spectroscopy. Perfusion applications are not limited to production process alone but include other upstream areas where high cell density process is essential such as in cell bank preparation, N-1 seed bioreactor, and combination with intensified fed-batch production process. This review covers recent advances in continuous processing over the last two years for biopharmaceutical production.
Collapse
Affiliation(s)
- Cary Matanguihan
- Bayer U.S. LLC, Pharmaceuticals, Biologics Development, 800 Dwight Way, Berkeley, CA 94701, USA.
| | - Paul Wu
- Bayer U.S. LLC, Pharmaceuticals, Biologics Development, 800 Dwight Way, Berkeley, CA 94701, USA
| |
Collapse
|
9
|
Silva TC, Eppink M, Ottens M. Small, smaller, smallest: Miniaturization of chromatographic process development. J Chromatogr A 2022; 1681:463451. [DOI: 10.1016/j.chroma.2022.463451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
10
|
Keulen D, Geldhof G, Bussy OL, Pabst M, Ottens M. Recent advances to accelerate purification process development: a review with a focus on vaccines. J Chromatogr A 2022; 1676:463195. [DOI: 10.1016/j.chroma.2022.463195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
11
|
Pons Royo MDC, Beulay JL, Valery E, Jungbauer A, Satzer P. Design of millidevices to expedite apparent solubility measurements. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00022a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fast, automated and accurate millidevice for determination of the apparent solubility of proteins and impurities and different industrially relevant precipitating agents.
Collapse
Affiliation(s)
- Maria del Carme Pons Royo
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Jean-Luc Beulay
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Eric Valery
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|