1
|
Peltret M, Vetsch P, Farvaque E, Mette R, Tsachaki M, Duarte L, Duret A, Vaxelaire E, Frank J, Moritz B, Aillerie C, Giovannini R, Bertschinger M. Development of a 10 g/L process for a difficult-to-express multispecific antibody format using a holistic process development approach. J Biotechnol 2024; 389:30-42. [PMID: 38685416 DOI: 10.1016/j.jbiotec.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.
Collapse
Affiliation(s)
- Mégane Peltret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Patrick Vetsch
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Romain Mette
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Maria Tsachaki
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Lionel Duarte
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Anaïs Duret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Jana Frank
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | | | | |
Collapse
|
2
|
Aebischer-Gumy C, Moretti P, Brunstein Laplace T, Frank J, Grand Y, Mosbaoui F, Hily E, Galea A, Peltret M, Estoppey C, Ayoub D, Giovannini R, Bertschinger M. Alternative splicing for tuneable expression of protein subunits at desired ratios. MAbs 2024; 16:2342243. [PMID: 38650451 PMCID: PMC11042056 DOI: 10.1080/19420862.2024.2342243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Timothee Brunstein Laplace
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Jana Frank
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Ysaline Grand
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Farid Mosbaoui
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Emilie Hily
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Anna Galea
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Megane Peltret
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Carole Estoppey
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Daniel Ayoub
- Analytical Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Roberto Giovannini
- Process Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
3
|
Heinzelmann D, Lindner B, Renner B, Fischer S, Schulz P, Schmidt M. Droplet digital PCR: A comprehensive tool for genetic analysis and prediction of bispecific antibody assembly during cell line development. N Biotechnol 2023; 78:42-51. [PMID: 37797917 DOI: 10.1016/j.nbt.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Molecular biological methods have emerged as inevitable tools to accompany the process of cell line development for the generation of stable and highly productive manufacturing cell lines in the biopharmaceutical industry. PCR-based methods are especially useful for screening and characterization of cell lines due to their low cost, scalability, precision and propensity for multidimensional read-outs. In this study, the diverse applications of droplet digital PCR (ddPCR) as a molecular biological tool for cell line development are demonstrated. Specifically, it is shown that ddPCR can be used to enable precise, sensitive and reproducible absolute quantification of genomically integrated transgene copies during cell line development and cell bank characterization. Additionally, an amplitude multiplexing approach is applied to simultaneously run multiple assays on different genetic targets in a single reaction and advance clonal screening by measuring gene expression profiles to predict the assembly and homogeneity of difficult-to-express (DTE) proteins. The implementation of ddPCR-based assays during cell line development allows for early screening at a transcriptional level, particularly for complex, multidomain proteins, where balanced polypeptide chain ratios are of primary importance. Moreover, it is demonstrated that ddPCR-based genomic characterization improves the robustness, efficiency and comparability of absolute transgene copy number quantification, an essential genetic parameter that must be demonstrated to regulatory authorities during clinical trial and market authorization application submissions to support genetic stability and consistency of the selected cell substrate.
Collapse
Affiliation(s)
- Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Renner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| |
Collapse
|
4
|
Sebastião MJ, Hoffman M, Escandell J, Tousi F, Zhang J, Figueroa B, DeMaria C, Gomes-Alves P. Identification of Mispairing Omic Signatures in Chinese Hamster Ovary (CHO) Cells Producing a Tri-Specific Antibody. Biomedicines 2023; 11:2890. [PMID: 38001891 PMCID: PMC10669571 DOI: 10.3390/biomedicines11112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Monoclonal antibody-based therapy has shown efficacy against cancer, autoimmune, infectious, and inflammatory diseases. Multispecific antibodies (MsAbs), including trispecifics (tsAbs), offer enhanced therapeutic potential by targeting different epitopes. However, when co-expressed from three or more different polypeptide chains, MsAb production can lead to incorrect chain assembly and co-production of mispaired species with impaired biological activity. Moreover, mispairing carries significant challenges for downstream purification, decreasing yields and increasing the cost of bioprocess development. In this study, quantitative transcriptomics and proteomics analyses were employed to investigate which signaling pathways correlated with low and high mispairing clone signatures. Gene and protein expression profiles of Chinese hamster ovary (CHO) clones producing an tsAb were analyzed in the exponential growth and stationary (tsAb production) phase of fed-batch culture. Functional analysis revealed activated endoplasmic reticulum stress in high mispairing clones in both culture phases, while low mispairing clones exhibited expression profiles indicative of activated protein translation, as well as higher endocytosis and target protein degradation, suggesting the clearance of unfolded proteins through ubiquitin-mediated mechanisms. In addition, through transcriptomic profiling, we identified a group of genes that have the potential to be used as a biomarker panel tool for identifying high mispairing levels in the early stages of bioprocess development.
Collapse
Affiliation(s)
- Maria João Sebastião
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Michael Hoffman
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - José Escandell
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fatemeh Tousi
- Sanofi Bioanalytics Development, Global CMC Development, Framingham, MA 01701, USA
| | - Jin Zhang
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Bruno Figueroa
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Christine DeMaria
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Madsen AV, Kristensen P, Buell AK, Goletz S. Generation of robust bispecific antibodies through fusion of single-domain antibodies on IgG scaffolds: a comprehensive comparison of formats. MAbs 2023; 15:2189432. [PMID: 36939220 PMCID: PMC10038023 DOI: 10.1080/19420862.2023.2189432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bispecific antibodies (bsAbs) enable dual binding of different antigens with potential synergistic targeting effects and innovative therapeutic possibilities. The formation of bsAbs is, however, often dependent on complex engineering strategies with a high risk of antibody chain mispairing leading to contamination of the final product with incorrectly assembled antibody species. This study demonstrates formation of bsAbs in a generic and conceptually easy manner through fusion of single-domain antibodies (sdAbs) onto IgG scaffolds through flexible 10 amino acid linkers to form high-quality bsAbs with both binding functionalities intact and minimal product-related impurities. SdAbs are attractive fusion partners due to their small and monomeric nature combined with antigen-binding capabilities comparable to conventional human antibodies. By systematically comparing a comprehensive panel of symmetric αPD-L1×αHER2 antibodies, including reversely mirrored antigen specificities, we investigate how the molecular geometry affects production, stability, antigen binding and CD16a binding. SdAb fusion of the heavy chain was generally preferred over light chain fusion for promoting good expression and high biophysical stability as well as maintaining efficient binding to both antigens. We find that N-terminal sdAb fusion might sterically hinder antigen-binding to the Fv region of the IgG scaffold, whereas C-terminal fusion might disturb antigen-binding to the fused sdAb. Our work demonstrates a toolbox of complementary methods for in-depth analysis of key features, such as in-solution dual antigen binding, thermal stability, and aggregation propensity, to ensure high bsAb quality. These techniques can be executed at high-throughput and/or with very low material consumption and thus represent valuable tools for bsAb screening and development.
Collapse
Affiliation(s)
- Andreas V Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Wang Y, Qiu H, Minshull J, Tam W, Hu X, Mieczkowski C, Zheng W, Chu C, Liu W, Boldog F, Gustafsson C, Gries JM, Xu W. An innovative platform to improve asymmetric bispecific antibody assembly, purity, and expression level in stable pool and cell line development. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Ong HK, Nguyen NTB, Bi J, Yang Y. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antib Ther 2022; 5:288-300. [PMID: 36518226 PMCID: PMC9743168 DOI: 10.1093/abt/tbac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Two-armed FabscFv-Fc is a favoured bispecific antibody (BsAb) format due to its advantages of the conventional IgG structure. Production of FabscFv-Fc requires expression of three polypeptide chains, one light chain (LC), one heavy chain (HC) and a scFv fused to the Fc (scFvFc) at optimal ratios. METHODS We designed a set of internal ribosome entry site (IRES)-mediated multi-cistronic vectors tailoring to various expression ratios of the three polypeptides to study how the chain ratios affect the FabscFv-Fc production. RESULTS Expression of HC and scFvFc chains at 1:1 ratio and excess LC gave the highest yield of correctly assembled product. Compared to the use of IRES and multiple promoters, using 2A peptides for co-expression of the three polypeptides gave the highest titre and correctly assembled product. CONCLUSION The results obtained in this work provide insights to the impacts of hetero-chain ratios on the BsAb production.
Collapse
Affiliation(s)
- Han Kee Ong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Ngan T B Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| |
Collapse
|