1
|
Valentic A, Hubbuch J. Effective removal of host cell-derived nucleic acids bound to hepatitis B core antigen virus-like particles by heparin chromatography. Front Bioeng Biotechnol 2024; 12:1475918. [PMID: 39431243 PMCID: PMC11487522 DOI: 10.3389/fbioe.2024.1475918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Virus-like particles (VLPs) show considerable potential for a wide array of therapeutic applications, spanning from vaccines targeting infectious diseases to applications in cancer immunotherapy and drug delivery. In the context of hepatitis B core antigen (HBcAg) VLPs, a promising candidate for gene delivery approaches, the naturally occurring nucleic acid (NA) binding region is commonly utilized for effective binding of various types of therapeutic nucleic acids (NAther). During formation of the HBcAg VLPs, host cell-derived nucleic acids (NAhc) might be associated to the NA binding region, and are thus encapsulated into the VLPs. Following a VLP harvest, the NAhc need to be removed effectively before loading the VLP with NAther. Various techniques reported in literature for this NAhc removal, including enzymatic treatments, alkaline treatment, and lithium chloride precipitation, lack quantitative evidence of sufficient NAhc removal accompanied by a subsequent high VLP protein recovery. In this study, we present a novel heparin chromatography-based process for effective NAhc removal from HBcAg VLPs. Six HBcAg VLP constructs with varying lengths of the NA binding region and diverse NAhc loadings were subjected to evaluation. Process performance was thoroughly examined through NAhc removal and VLP protein recovery analyses. Hereby, reversed phase chromatography combined with UV/Vis spectroscopy, as well as silica spin column-based chromatography coupled with dye-based fluorescence assay were employed. Additionally, alternative process variants, comprising sulfate chromatography and additional nuclease treatments, were investigated. Comparative analyses were conducted with LiCl precipitation and alkaline treatment procedures to ascertain the efficacy of the newly developed chromatography-based methods. Results revealed the superior performance of the heparin chromatography procedure in achieving high NAhc removal and concurrent VLP protein recovery. Furthermore, nuanced relationships between NA binding region length and NAhc removal efficiency were elucidated. Hereby, the construct Cp157 surpassed the other constructs in the heparin process by demonstrating high NAhc removal and VLP protein recovery. Among the other process variants minimal performance variations were observed for the selected constructs Cp157 and Cp183. However, the heparin chromatography-based process consistently outperformed other methods, underscoring its superiority in NAhc removal and VLP protein recovery.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences – Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
2
|
Valentic A, Böhner N, Hubbuch J. Absolute Quantification of Hepatitis B Core Antigen (HBcAg) Virus-like Particles and Bound Nucleic Acids. Viruses 2023; 16:13. [PMID: 38275948 PMCID: PMC10820971 DOI: 10.3390/v16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Effective process development towards intensified processing for gene delivery applications using Hepatitis B core Antigen (HBcAg) virus-like particles (VLPs) relies on analytical methods for the absolute quantification of HBcAg VLP proteins and bound nucleic acids. We investigated a silica spin column (SC)-based extraction procedure, including proteinase K lysis and silica chromatography, for the absolute quantification of different species of nucleic acids bound to HBcAg VLPs analyzed by dye-based fluorescence assays. This revealed load-dependent nucleic acid recoveries of the silica-SC-based extraction. We also developed a reversed-phase high-performance liquid chromatography (RP-HPLC) method to separate and quantify the HBcAg proteins and the bound nucleic acids simultaneously without prior sample treatment by dissociation reagents. The method demonstrated sufficient linearity, accuracy, and precision coefficients and is suited for determining absolute protein and nucleic acid concentrations and HBcAg protein purities at various purification stages. Both the silica-SC-based extraction and the RP-based extraction presented overcome the limitations of analytical techniques, which are restricted to relative or qualitative analyses for HBcAg VLPs with bound nucleic acids. In combination with existing analytics, the methods for an absolute quantification of HBcAg VLPs and bound nucleic acids presented here are required to evaluate downstream purification steps, such as the removal of host cell-derived nucleic acids, concurrent protein loss, and efficient loading with therapeutic nucleic acids. Hence, the methods are key for effective process development when using HBcAg VLP as potential gene delivery vehicles.
Collapse
Affiliation(s)
| | | | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences—Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.V.); (N.B.)
| |
Collapse
|
3
|
Hillebrandt N, Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front Bioeng Biotechnol 2023; 11:1192050. [PMID: 37304136 PMCID: PMC10248422 DOI: 10.3389/fbioe.2023.1192050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Vormittag P, Wolff MW. Editorial: Advances in bioprocessing of viral vectors and virus-like particles. Front Bioeng Biotechnol 2023; 11:1166430. [PMID: 36998809 PMCID: PMC10043472 DOI: 10.3389/fbioe.2023.1166430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
- Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- *Correspondence: Michael W. Wolff,
| |
Collapse
|
5
|
Wegner CH, Hubbuch J. Calibration-free PAT: Locating selective crystallization or precipitation sweet spot in screenings with multi-way PARAFAC models. Front Bioeng Biotechnol 2022; 10:1051129. [PMID: 36588941 PMCID: PMC9797130 DOI: 10.3389/fbioe.2022.1051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
When developping selective crystallization or precipitation processes, biopharmaceutical modalities require empirical screenings and analytics tailored to the specific needs of the target molecule. The multi-way chemometric approach called parallel factor analysis (PARAFAC) coupled with ultraviolet visible light (UV/Vis) spectroscopy is able to predict specific concentrations and spectra from highly structured data sets without the need for calibration samples and reference analytics. These calculated models can provide exploratory information on pure species spectra and concentrations in all analyzed samples by representing one model component with one species. In this work, protein mixtures, monoclonal antibodies, and virus-like particles in chemically defined and complex solutions were investigated in three high-throughput crystallization or precipitation screenings with the aim to construct one PARAFAC model per case. Spectroscopic data sets of samples after the selective crystallization or precipitation, washing, and redissolution were recorded and arranged into a four-dimensional data set per case study. Different reference analytics and pure species spectra served as validation. Appropriate spectral preprocessing parameters were found for all case studies allowing even the application of this approach to the third case study in which quantitative concentration analytics are missing. Regardless of the modality or the number of species present in complex solutions, all models were able to estimate the specific concentration and find the optimal process condition regarding yield and product purity. It was shown that in complex solutions, species demonstrating similar phase behavior can be clustered as one component and described in the model. PARAFAC as a calibration-free approach coupled with UV/Vis spectroscopy provides a fast overview of species present in complex solution and of their concentration during selective crystallization or precipitation, washing, and redissolution.
Collapse
|
6
|
Depta PN, Dosta M, Wenzel W, Kozlowska M, Heinrich S. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles. Int J Mol Sci 2022; 23:ijms232314699. [PMID: 36499027 PMCID: PMC9740473 DOI: 10.3390/ijms232314699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.
Collapse
Affiliation(s)
- Philipp Nicolas Depta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Correspondence:
| | - Maksym Dosta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Boehringer Ingelheim Pharma GmbH & Co Kg., 88400 Biberach an der Riss, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heinrich
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
7
|
Valentic A, Müller J, Hubbuch J. Effects of Different Lengths of a Nucleic Acid Binding Region and Bound Nucleic Acids on the Phase Behavior and Purification Process of HBcAg Virus-Like Particles. Front Bioeng Biotechnol 2022; 10:929243. [PMID: 35845397 PMCID: PMC9283707 DOI: 10.3389/fbioe.2022.929243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Virus-like particles (VLPs) are macromolecular structures with great potential as vehicles for the targeted administration of functional molecules. Loaded with nucleic acids, VLPs are a promising approach for nanocarriers needed for gene therapy. There is broad knowledge of the manufacturing of the truncated wild-type lacking a nucleic acid binding region, which is mainly being investigated for vaccine applications. Whereas for their potential application as a nanocarrier for gene therapy, hepatitis B core antigen (HBcAg) VLPs with a nucleic acid binding region for efficient cargo-loading are being investigated. VLP structure, loading, and phase behavior are of central importance to their therapeutic efficacy and thereby considerably affecting the production process. Therefore, HBcAg VLPs with different lengths of the nucleic acid binding region were produced in E. coli. VLP attributes such as size, zeta potential, and loading with host cell-derived nucleic acids were evaluated. Capsid’s size and zeta potential of the VLP constructs did not differ remarkably, whereas the analysis of the loading with host cell-derived nucleic acids revealed strong differences in the binding of host cell-derived nucleic acids dependent on the length of the binding region of the constructs, with a non-linear correlation but a two-zone behavior. Moreover, the phase behavior and purification process of the HBcAg VLPs as a function of the liquid phase conditions and the presence of host cell-derived nucleic acids were investigated. Selective VLP precipitation using ammonium sulfate was scarcely affected by the encapsulated nucleic acids. However, the disassembly reaction, which is crucial for structure homogeneity, separation of encapsulated impurities, and effective loading of the VLPs with therapeutic nucleic acids, was affected both by the studied liquid phase conditions, varying pH and concentration of reducing agents, and the different VLP constructs and amount of bound nucleic acids, respectively. Thereby, capsid-stabilizing effects of the bound nucleic acids and capsid-destabilizing effects of the nucleic acid binding region were observed, following the two-zone behavior of the construct’s loading, and a resulting correlation between the capsid stability and disassembly yields could be derived.
Collapse
|
8
|
Leong HY, Fu XQ, Show PL, Yao SJ, Lin DQ. Downstream processing of virus-like particles with aqueous two-phase systems: applications and challenges. J Sep Sci 2022; 45:2064-2076. [PMID: 35191590 DOI: 10.1002/jssc.202100947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/06/2022]
Abstract
The advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide. This review aims to highlight the challenges and outlook in addition to the current applications of aqueous two-phase systems in downstream processing of virus-like particles. The efforts will confidently reinforce scholars' knowledge and fill in the valuable research gap in the aspect of concerning recombinant virus-like particle-based vaccines development, particularly related to the virus-like particles downstream production processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, Selangor Darul Ehsan, 43500 Semenyih, Malaysia
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Hillebrandt N, Vormittag P, Dietrich A, Hubbuch J. Process Monitoring Framework for Cross‐flow Diafiltration‐based Virus‐like Particle Disassembly: Tracing Product Properties and Filtration Performance. Biotechnol Bioeng 2022; 119:1522-1538. [DOI: 10.1002/bit.28063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| |
Collapse
|