1
|
Badreldin N, Cheng X, Youssef A. An Overview of Software Sensor Applications in Biosystem Monitoring and Control. SENSORS (BASEL, SWITZERLAND) 2024; 24:6738. [PMID: 39460218 PMCID: PMC11511387 DOI: 10.3390/s24206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
This review highlights the critical role of software sensors in advancing biosystem monitoring and control by addressing the unique challenges biological systems pose. Biosystems-from cellular interactions to ecological dynamics-are characterized by intrinsic nonlinearity, temporal variability, and uncertainty, posing significant challenges for traditional monitoring approaches. A critical challenge highlighted is that what is typically measurable may not align with what needs to be monitored. Software sensors offer a transformative approach by integrating hardware sensor data with advanced computational models, enabling the indirect estimation of hard-to-measure variables, such as stress indicators, health metrics in animals and humans, and key soil properties. This article outlines advancements in sensor technologies and their integration into model-based monitoring and control systems, leveraging the capabilities of Internet of Things (IoT) devices, wearables, remote sensing, and smart sensors. It provides an overview of common methodologies for designing software sensors, focusing on the modelling process. The discussion contrasts hypothetico-deductive (mechanistic) models with inductive (data-driven) models, illustrating the trade-offs between model accuracy and interpretability. Specific case studies are presented, showcasing software sensor applications such as the use of a Kalman filter in greenhouse control, the remote detection of soil organic matter, and sound recognition algorithms for the early detection of respiratory infections in animals. Key challenges in designing software sensors, including the complexity of biological systems, inherent temporal and individual variabilities, and the trade-offs between model simplicity and predictive performance, are also discussed. This review emphasizes the potential of software sensors to enhance decision-making and promote sustainability in agriculture, healthcare, and environmental monitoring.
Collapse
Affiliation(s)
- Nasem Badreldin
- Department of Soil Science, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada;
| | - Xiaodong Cheng
- Mathematical and Statistical Methods Group (Biometris), Department of Plant Science, Wageningen University & Research, 6700 AA Wageningen, The Netherlands;
| | - Ali Youssef
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
2
|
Reyes SJ, Pham PL, Durocher Y, Henry O. CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies. Biotechnol Prog 2024:e3507. [PMID: 39329353 DOI: 10.1002/btpr.3507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and kLa must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Department of Chemical Engineering, Polytechnique Montreal, Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Quebec, Canada
| |
Collapse
|
3
|
Stalidzans E, Muiznieks R, Dubencovs K, Sile E, Berzins K, Suleiko A, Vanags J. A Fermentation State Marker Rule Design Task in Metabolic Engineering. Bioengineering (Basel) 2023; 10:1427. [PMID: 38136018 PMCID: PMC10740952 DOI: 10.3390/bioengineering10121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
There are several ways in which mathematical modeling is used in fermentation control, but mechanistic mathematical genome-scale models of metabolism within the cell have not been applied or implemented so far. As part of the metabolic engineering task setting, we propose that metabolite fluxes and/or biomass growth rate be used to search for a fermentation steady state marker rule. During fermentation, the bioreactor control system can automatically detect the desired steady state using a logical marker rule. The marker rule identification can be also integrated with the production growth coupling approach, as presented in this study. A design of strain with marker rule is demonstrated on genome scale metabolic model iML1515 of Escherichia coli MG1655 proposing two gene deletions enabling a measurable marker rule for succinate production using glucose as a substrate. The marker rule example at glucose consumption 10.0 is: IF (specific growth rate μ is above 0.060 h-1, AND CO2 production under 1.0, AND ethanol production above 5.5), THEN succinate production is within the range 8.2-10, where all metabolic fluxes units are mmol ∗ gDW-1 ∗ h-1. An objective function for application in metabolic engineering, including productivity features and rule detecting sensor set characterizing parameters, is proposed. Two-phase approach to implementing marker rules in the cultivation control system is presented to avoid the need for a modeler during production.
Collapse
Affiliation(s)
- Egils Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Reinis Muiznieks
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Konstantins Dubencovs
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Elina Sile
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
| | - Kristaps Berzins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Arturs Suleiko
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Juris Vanags
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| |
Collapse
|
4
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
5
|
The Role of Process Systems Engineering in Applying Quality by Design (QbD) in Mesenchymal Stem Cell Production. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|