1
|
Nigro V, Angelini R, Buratti E, Colantonio C, D’Amato R, Dinelli F, Franco S, Limosani F, Montereali RM, Nichelatti E, Piccinini M, Vincenti MA, Ruzicka B. Influence of a Solid Surface on PNIPAM Microgel Films. Gels 2024; 10:473. [PMID: 39057496 PMCID: PMC11276228 DOI: 10.3390/gels10070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Stimuli-responsive microgels have attracted great interest in recent years as building blocks for fabricating smart surfaces with many technological applications. In particular, PNIPAM microgels are promising candidates for creating thermo-responsive scaffolds to control cell growth and detachment via temperature stimuli. In this framework, understanding the influence of the solid substrate is critical for tailoring microgel coatings to specific applications. The surface modification of the substrate is a winning strategy used to manage microgel-substrate interactions. To control the spreading of microgel particles on a solid surface, glass substrates are coated with a PEI or an APTES layer to improve surface hydrophobicity and add positive charges on the interface. A systematic investigation of PNIPAM microgels spin-coated through a double-step deposition protocol on pristine glass and on functionalised glasses was performed by combining wettability measurements and Atomic Force Microscopy. The greater flattening of microgel particles on less hydrophilic substrates can be explained as a consequence of the reduced shielding of the water-substrate interactions that favors electrostatic interactions between microgels and the substrate. This approach allows the yielding of effective control on microgel coatings that will help to unlock new possibilities for their application in biomedical devices, sensors, or responsive surfaces.
Collapse
Affiliation(s)
- Valentina Nigro
- ENEA C.R. Frascati, Nuclear Department, Via Enrico Fermi 45, 00044 Frascati, Italy
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
| | - Roberta Angelini
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
- Physics Department, Sapienza University, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Elena Buratti
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 14412 Ferrara, Italy
| | - Claudia Colantonio
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
| | - Rosaria D’Amato
- ENEA C.R. Frascati, Nuclear Department, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Franco Dinelli
- National Institute of Optics (INO-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Silvia Franco
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
- Physics Department, Sapienza University, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Francesca Limosani
- ENEA C.R. Casaccia, Nuclear Department, Via Anguillarese, 301, 00123 Rome, Italy
| | | | - Enrico Nichelatti
- ENEA C.R. Casaccia, Nuclear Department, Via Anguillarese, 301, 00123 Rome, Italy
| | - Massimo Piccinini
- ENEA C.R. Frascati, Nuclear Department, Via Enrico Fermi 45, 00044 Frascati, Italy
| | | | - Barbara Ruzicka
- Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy
- Physics Department, Sapienza University, P.le Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
2
|
Wang T, Liu C, Li Y, Zhang L, Cheng Z. Preparation of Temperature-Responsive Films Based on PNVCL Microgel with Varying Sizes and Cross-Linking Degrees for Cell Harvesting. Macromol Rapid Commun 2024:e2400156. [PMID: 38683686 DOI: 10.1002/marc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 05/02/2024]
Abstract
This work reports preparing thermal responsive poly (N-isovinylcaprolactam) (PNVCL) microgel based films for cell growth and detachment. PNVCL microgels of hydrated size ranging from 386 to 815 nm (25 °C) and different crosslinking degree are prepared. The PNVCL microgels can be rapidly and massively deposited on glass by spin coating method. Atomic force microscopy (AFM) and water contact angle (WCA) are used to study the influence of crosslinking degree and particle size on the surface morphology, stability, and hydrophilicity of PNVCL microgel film. The cell activity of the desorbed cells is quantitatively characterized employing human normal lung epithelial cells (BEAS-2B). The results show that BEAS-2B cells can be desorbed quickly from the film in 30 min, and the optical density (OD) value of desorbed cells incubated after 3 d increases by approximately 52% compared to the control group. This study broadens the selection of temperature-sensitive film for cell harvesting, and provides a new tool for the quantitative characterization of desorbed cells.
Collapse
Affiliation(s)
- Tao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Uredat S, Gujare A, Runge J, Truzzolillo D, Oberdisse J, Hellweg T. A review of stimuli-responsive polymer-based gating membranes. Phys Chem Chem Phys 2024; 26:2732-2744. [PMID: 38193196 DOI: 10.1039/d3cp05143a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation and properties of smart (stimuli-responsive) membranes are reviewed, with a special focus on temperature and pH triggering of gating to water, ions, polymers, nanoparticles, or other molecules of interest. The review is organized in two parts, starting with all-smart membranes based on intrinsically smart materials, in particular of the poly(N-isopropylacrylamide) family and similar polymers. The key steps of membrane fabrication are discussed, namely the deposition into thin films, functionalization of pores, and the secondary crosslinking of pre-existing microgel particles into membranes. The latter may be free-standing and do not necessitate the presence of a porous support layer. The temperature-dependent swelling properties of polymers provide a means of controlling the size of pores, and thus size-sensitive gating. Throughout the review, we highlight "positive" (gates open) or "negative" (closed) gating effects with respect to increasing temperature. In the second part, the functionalization of porous organic or inorganic membranes of various origins by either microgel particles or linear polymer brushes is discussed. In this case, the key steps are the adsorption or grafting mechanisms. Finally, whenever provided by the authors, the suitability of smart gating membranes for specific applications is highlighted.
Collapse
Affiliation(s)
- Stefanie Uredat
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Aditi Gujare
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Jonas Runge
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
4
|
Darge HF, Lin YH, Hsieh-Chih T, Lin SY, Yang MC. Thermo/redox-responsive dissolvable gelatin-based microsphere for efficient cell harvesting during 3D cell culturing. BIOMATERIALS ADVANCES 2022; 139:213008. [PMID: 35882154 DOI: 10.1016/j.bioadv.2022.213008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The use of microspheres for culturing adherent cells has been proven as an important method, allowing for obtaining adequate number of cells in limited space and volume of medium for the intended cell-based medical applications. However, the use of proteolytic enzymes for cell harvesting from the microsphere resulted in cell damage and loss of functionality. Therefore, in this study, we developed a novel redox/thermo-responsive dissolvable gelatin-based microsphere for successful cell proliferation and harvesting adequate high-quality cells using non-enzymatic cell detachment methods. Initially, a redox-induced dissolvable gelatin-based microsphere was successfully prepared using disulfide bonds as crosslinking agent, firmly stabilizing gelatin networks and forming a stable microsphere at physiological temperature. The optimized concentration of the crosslinking agent was 1.2 mM, which kept the microsphere stable for >120 h. The microsphere was then coated with PNIPAm-ALA copolymer via physical or chemical means, resulting in a positively charged thermosensitive surface. The positive charge derived from ALA in PNIPAm-ALA copolymer enhanced cell attachment, while the thermosensitive property of the copolymer enabled for temperature induced cell harvesting. When the temperature dropped below the LCST value of PNIPAm-ALA5 (33.4°C), the copolymer swelled and became more hydrophilic, allowing cells to be readily separated. The addition of reducing agents such as GSH, DTT and L-cysteine resulted in further cleavage of the disulfide bond in the microsphere and dissolution of the microsphere for complete cell detachment. Interestingly, cell attachment and proliferation were enhanced on microspheres coated with PNIPAm-ALA5 using diselenide as a crosslinking agent, and complete cell detachment was occurred within 15 min after adding 25 mM DTT followed by lowering the temperature (4°C). Therefore, the microsphere fabricated in this study was worthwhile for non-enzymatic cell detachment and has the potential to be used for cell expansion and harvesting adequate live cells of high quality and functionality for tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yu-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tsai Hsieh-Chih
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
5
|
Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties. Molecules 2022; 27:molecules27134027. [PMID: 35807272 PMCID: PMC9268726 DOI: 10.3390/molecules27134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test.
Collapse
|