1
|
He Y, Ji L, Yuan Y, Rui D, Li J, Cheng P, Sun L, Fan J. Recent advances in polysaccharide-dominated extracellular polymeric substances from microalgae: A review. Int J Biol Macromol 2025; 302:140572. [PMID: 39904439 DOI: 10.1016/j.ijbiomac.2025.140572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Microalgae are an environmentally friendly and sustainable alternative resource for future food and pharmaceutical production. Microalgal extracellular polymeric substances (EPMS) are polymers consisting of polysaccharides, proteins, lipids and nucleic acids secreted by microalgal cells. This review systematically summarizes the research progress of microalgal EPMS, including its composition, structure, formation, biological activity and application. The diversity of structural units and binding modes confers microalgal EPMS with unique structural and biological activity, which is species-specific. In addition to the polysaccharides with antioxidant, antiviral, and antitumor effects, extracellular vesicles isolated from microalgal EPMS are emerging as new drug carriers. However, challenges such as relatively low yields, complex separation techniques, intricate processing-secretion pathways, and unclear mechanisms of action still hinder the industrial application of microalgal EPMS. By scientifically summarizing the research progress and leveraging strategies such as metabolic regulation, genetic modification, and advanced separation and characterization technologies, microalgal EPMS is expected to see widespread applications in the food, cosmetics, and therapeutic industries.
Collapse
Affiliation(s)
- Yulong He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuchen Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Die Rui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaxin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
4
|
Philipp LA, Bühler K, Ulber R, Gescher J. Beneficial applications of biofilms. Nat Rev Microbiol 2024; 22:276-290. [PMID: 37957398 DOI: 10.1038/s41579-023-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Johannes Gescher
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany.
| |
Collapse
|
5
|
Tang Y, Zhang Z, Tao C, Wang X. The mechanism of biofilm detachment in porous medium under flow field. BIOMICROFLUIDICS 2024; 18:034103. [PMID: 38737754 PMCID: PMC11080962 DOI: 10.1063/5.0203061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Biofilms are communities formed by bacteria adhering to surfaces, widely present in porous medium, and their growth can lead to clogging. Our experiment finds that under certain flow conditions, biofilms detach in pores and form a dynamically changing flow path. We define detachment that occurs far from the boundary of the flow path (with a distance greater than 200 μm) as internal detachment and detachment that occurs at the boundary of the flow path as external detachment. To understand the mechanism of biofilm detachment, we study the detachment behaviors of the Bacillus subtilis biofilm in a porous medium in a microfluidic device, where Bacillus subtilis strain is triple fluorescent labeled, which can represent three main phenotypes during the biofilm formation: motile cells, matrix-producing cells, and spores. We find that slow small-scale internal detachment occurs in regions with very few motile cells and matrix-producing cells, and bacterial movement in these areas is disordered. The increase in the number of matrix-producing cells induces clogging, and after clogging, the rapid detachment of the bulk internal biofilm occurs due to the increased pressure difference at the inlet and outlet. When both internal and external detachments occur simultaneously, the number of matrix-producing cells in the internal detachment area is 2.5 times that in the external detachment area. The results indicate that biofilm detachment occurs in areas with fewer matrix-producing cells, as matrix-producing cells can help resist detachment by secreting extracellular polymeric substances (EPSs).
Collapse
Affiliation(s)
- Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cong Tao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | |
Collapse
|
6
|
Pechaud Y, Derlon N, Queinnec I, Bessiere Y, Paul E. Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. WATER RESEARCH 2024; 250:120985. [PMID: 38118257 DOI: 10.1016/j.watres.2023.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
In industry, treatments against biofilms need to be optimized and, in the wastewater treatment field, biofilm composition needs to be controlled. Therefore, describing the biochemical and physical structures of biofilms is now required to better understand the influence of operating parameters and treatment on biofilms. The present study aims to investigate how growth conditions influence EPS composition, biofilm physical properties and volume detachment using a 1D biofilm model. Two types of EPS are considered in the present model, proteins and polysaccharides. The main hypotheses are that: (i) the production of polysaccharides occurs mainly under strong nutrient limitation(s) while the production of proteins is coupled to both the substrate uptake rate and the lysis process; (ii) the local biofilm porosity depends on the local biofilm composition. Both volume and surface detachment occur in biofilms and volume detachment extent depends on the biofilm local cohesion and thus on the local composition of biofilms for a given shear stress. The model is based on experimental trends and aims to represent these observations on the basis of biochemical and physical processes. Four case studies covering a wide range of contrasting growth conditions such as different COD/N ratios, applied SOLR and shear stresses are investigated. The model predicts how the biochemical and physical biofilm structures change as a result of contrasting growth conditions. More precisely simulation results are in good agreement with the main experimental observations reported in the literature, such as: (i) a strong nitrogen limitation of growth induces an important accumulation of polysaccharides leading to a more porous and homogenous biofilm, (ii) a high applied surface organic loading load allows to obtain a high biofilm thickness, (iii) a strong shear stress applied during the biofilm growth leads to a reduction of the biofilm thickness and to a consolidation of the biofilm structure. Overall, this model represents a relevant decision tool for the selection of appropriate enzymatic treatments in the context of negative biofilm control. From our results, it appears that protease based treatments should be more appropriate for biofilms developed under low COD/N ratios (about 20 gCOD/gN) whereas both glucosidases and proteases based treatments should be more appropriate for biofilms developed under high COD/N ratio (about 70 gCOD/gN). In addition, the model could be useful for other applications such as resource recovery in biofilms or granules, and help to better understand biological membrane fouling.
Collapse
Affiliation(s)
- Y Pechaud
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France; Laboratoire Géomatériaux et Environnement (EA 4508), Université Gustave Eiffel, Marne-la-Vallée 77454, France.
| | - N Derlon
- EAWAG, Ueberlandstrasse 133, P.O Box 611, Dübendorf 8600, Switzerland
| | - I Queinnec
- CNRS, LAAS, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Y Bessiere
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France
| | - E Paul
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France.
| |
Collapse
|
7
|
Yuan L, Straub H, Shishaeva L, Ren Q. Microfluidics for Biofilm Studies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:139-159. [PMID: 37314876 DOI: 10.1146/annurev-anchem-091522-103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biofilms are multicellular communities held together by a self-produced extracellular matrix and exhibit a set of properties that distinguish them from free-living bacteria. Biofilms are exposed to a variety of mechanical and chemical cues resulting from fluid motion and mass transport. Microfluidics provides the precise control of hydrodynamic and physicochemical microenvironments to study biofilms in general. In this review, we summarize the recent progress made in microfluidics-based biofilm research, including understanding the mechanism of bacterial adhesion and biofilm development, assessment of antifouling and antimicrobial properties, development of advanced in vitro infection models, and advancement in methods to characterize biofilms. Finally, we provide a perspective on the future direction of microfluidics-assisted biofilm research.
Collapse
Affiliation(s)
- Lu Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China;
| | - Hervé Straub
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Liubov Shishaeva
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| |
Collapse
|
8
|
Li M, Nahum Y, Matouš K, Stoodley P, Nerenberg R. Effects of biofilm heterogeneity on the apparent mechanical properties obtained by shear rheometry. Biotechnol Bioeng 2023; 120:553-561. [PMID: 36305479 DOI: 10.1002/bit.28276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/13/2023]
Abstract
Rheometry is an experimental technique widely used to determine the mechanical properties of biofilms. However, it characterizes the bulk mechanical behavior of the whole biofilm. The effects of biofilm mechanical heterogeneity on rheometry measurements are not known. We used laboratory experiments and computer modeling to explore the effects of biofilm mechanical heterogeneity on the results obtained by rheometry. A synthetic biofilm with layered mechanical properties was studied, and a viscoelastic biofilm theory was employed using the Kelvin-Voigt model. Agar gels with different concentrations were used to prepare the layered, heterogeneous biofilm, which was characterized for mechanical properties in shear mode with a rheometer. Both experiments and simulations indicated that the biofilm properties from rheometry were strongly biased by the weakest portion of the biofilm. The simulation results using linearly stratified mechanical properties from a previous study also showed that the weaker portions of the biofilm dominated the mechanical properties in creep tests. We note that the model can be used as a predictive tool to explore the mechanical behavior of complex biofilm structures beyond those accessible to experiments. Since most biofilms display some degree of mechanical heterogeneity, our results suggest caution should be used in the interpretation of rheometry data. It does not necessarily provide the "average" mechanical properties of the entire biofilm if the mechanical properties are stratified.
Collapse
Affiliation(s)
- Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yanina Nahum
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Karel Matouš
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|