Kim MH, Thanuthanakhun N, Kino-Oka M. A simple tool for the synchronous differentiation of human induced pluripotent stem cells into pancreatic progenitors.
Biotechnol J 2024;
19:e2300364. [PMID:
37955342 DOI:
10.1002/biot.202300364]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Efficient differentiation of human induced pluripotent stem cells (hiPSCs) into functional pancreatic cells holds great promise for diabetes research and treatment. However, a robust culture strategy for producing pancreatic progenitors with high homogeneity is lacking. Here, we established a simple differentiation strategy for generating synchronous iPSC-derived pancreatic progenitors via a two-step method of sequential cell synchronization using botulinum hemagglutinin (HA), an E-cadherin function-blocking agent. Of the various methods tested, the first-step synchronization method with HA exposure induces a synchronous switch from E- to N-cadherin and N- to E-cadherin expression by spatially controlling heterogeneous cell distribution, subsequently improving their competency for directed differentiation into definitive endodermal cells from iPSCs. The iPSC-derived definitive endodermal cells can efficiently generate PDX1+ and NKX6.1+ pancreatic progenitor cells in high yields. The PDX1+ and PDX1+ /NKX6.1+ cell densities showed 1.6- and 2.2-fold increases, respectively, compared with those from unsynchronized cultures. The intra-run and inter-run coefficient of variation were below 10%, indicating stable and robust differentiation across different cultures and runs. Our approach is a simple and efficient strategy to produce large quantities of differentiated cells with the highest homogeneity during multistage pancreatic progenitor differentiation, providing a potential tool for guided differentiation of iPSCs to functional insulin-producing cells.
Collapse