1
|
Gao C, Zhang W, Zhao L, Tan WS. A novel approach for perfusion process design based on a "Grey-Box" kinetic model. Bioprocess Biosyst Eng 2024; 47:2011-2025. [PMID: 39251449 DOI: 10.1007/s00449-024-03082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the "theoretically optimal" operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 107 cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 108 cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.
Collapse
Affiliation(s)
- Chenxi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weijian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai BioEngine Sci-Tech CO., LTD, Shanghai, 201203, China
| |
Collapse
|
2
|
Sin WX, Jagannathan NS, Teo DBL, Kairi F, Fong SY, Tan JHL, Sandikin D, Cheung KW, Luah YH, Wu X, Raymond JJ, Lim FLWI, Lee YH, Seng MSF, Soh SY, Chen Q, Ram RJ, Tucker-Kellogg L, Birnbaum ME. A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells. Nat Biomed Eng 2024:10.1038/s41551-024-01219-1. [PMID: 38834752 DOI: 10.1038/s41551-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2024] [Indexed: 06/06/2024]
Abstract
The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - N Suhas Jagannathan
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Faris Kairi
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dedy Sandikin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Ka-Wai Cheung
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Yen Hoon Luah
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Xiaolin Wu
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Joshua Jebaraj Raymond
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Advanced Cell Therapy and Research Institute, Singapore (ACTRIS), Consortium for Clinical Research and Innovation, Singapore (CRIS), Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Michaela Su-Fern Seng
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rajeev J Ram
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| | - Michael E Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Kretzmer C, Reger K, Balassi V, Pham QL, Johns M, Peters ST, Petersen A, Mahadevan J, Gustin J, Borgschulte T, Razafsky D. Chemical and Genetic Modulation of Complex I of the Electron Transport Chain Enhances the Biotherapeutic Protein Production Capacity of CHO Cells. Cells 2023; 12:2661. [PMID: 37998396 PMCID: PMC10670226 DOI: 10.3390/cells12222661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein production, CHOZN® GS-/- cell lines were screened with 1280 small molecules, and two were identified, forskolin and BrdU, which increased productivity by ≥40%. While it is possible to incorporate these small molecules into a commercial-scale process, doing so may not be financially feasible or could raise regulatory concerns related to the purity of the final drug substance. To circumvent these issues, RNA-Seq was performed to identify transcripts which were up- or downregulated upon BrdU treatment. Subsequent Reactome pathway analysis identified the electron transport chain as an affected pathway. CRISPR/Cas9 was utilized to create missense mutations in two independent components of the electron transport chain and the resultant clones partially recapitulated the phenotypes observed upon BrdU treatment, including the productivity of recombinant therapeutic proteins. Together, this work suggests that BrdU can enhance the productivity of CHO cells by modulating cellular energetics and provides a blueprint for translating data from small molecule chemical screens into genetic engineering targets to improve the performance of CHO cells. This could ultimately lead to more productive host cell lines and a more cost-effective method of supplying medication to patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David Razafsky
- Upstream Research and Development, MilliporeSigma, Saint Louis, MO 63103, USA (A.P.); (J.G.); (T.B.)
| |
Collapse
|
5
|
Geada I, Roldão A, Betenbaugh MJ, Alves PM. Advanced cell technologies: Making protein, cell, and gene therapies a reality. Biotechnol Bioeng 2023; 120:2385-2388. [PMID: 37534587 DOI: 10.1002/bit.28521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Isabelle Geada
- Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Antonio Roldão
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Michael J Betenbaugh
- Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|