1
|
Melocchi A, Schmittlein B, Sadhu S, Nayak S, Lares A, Uboldi M, Zema L, di Robilant BN, Feldman SA, Esensten JH. Automated manufacturing of cell therapies. J Control Release 2025; 381:113561. [PMID: 39993639 DOI: 10.1016/j.jconrel.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Advanced therapy medicinal products (ATMPs), particularly genetically engineered cell-based therapies, are a major class of drugs with several high-profile Food and Drug Administration (FDA) approvals in the past decade. However, the high cost and limited production capacity of these drugs remain a barrier to access. These costs are primarily due to the complex manufacturing processes (often a single batch for a single patient), which increases personnel and facility expenses, and the challenges associated with tech-transfer from research and development stages to clinical-stage production. In order to scale up and scale out in a cost-effective way, automated solutions capable of multi-step manufacturing have been developed in academia and industry. The aim of the present article is to summarize the design approaches and key features of current multi-step automated systems for cell therapy manufacturing. For each system described in the literature, we will discuss different aspects in detail such as cell specificity, modularity, processing models, manufacturing locations, and integrated quality control. Our analysis highlights that developers need to balance competing needs in an environment where the biological, business, and technological factors are constantly evolving. Thus, designing engineering solutions that align with the pharmaceutical end-user is essential. Adopting a risk-based approach grounded in published data is the most effective strategy to evaluate existing and emerging automated systems.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy; Multiply Labs, San Francisco, CA, USA.
| | | | | | | | | | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Esensten
- Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
2
|
Klimpel M, Pflüger‐Müller B, Cascallana MA, Schwingal S, Lal NI, Noll T, Pirzas V, Laux H. Perfusion Process Intensification for Lentivirus Production Using a Novel Scale-Down Model. Biotechnol Bioeng 2025; 122:344-360. [PMID: 39535315 PMCID: PMC11718438 DOI: 10.1002/bit.28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small-scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4-fold higher cell-specific functional virus yield and 2.8-fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set-up, resulting in a 1.4-fold higher cell-specific functional virus yield and 3.1-fold higher volumetric virus yield.
Collapse
Affiliation(s)
| | | | | | - Sarah Schwingal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Nikki Indresh Lal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Thomas Noll
- Center for Biotechnology (CeBiTec)University of BielefeldBielefeldGermany
| | - Vicky Pirzas
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Holger Laux
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| |
Collapse
|
3
|
Ladd B, Gräslund T, Chotteau V. Harnessing cell aggregates for enhanced adeno-associated virus manufacturing: Cultivation strategies and scale-up considerations. Biotechnol Prog 2025:e3522. [PMID: 39846514 DOI: 10.1002/btpr.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated. It was, however, found that the spent medium of the HCDP inhibited the transfection of HEK293T cell aggregates, which was confirmed when testing with single-cell suspension culture. The formation of aggregates in shaken multi-well plates was also investigated to develop a screening system using the average power input as a scale-down criterion, which revealed that cell aggregates could be generated in 12-well plates, however with a larger size than in a STR. Taking into account the reported higher rAAV production of adherent cells in comparison with single cells for triple-plasmid transfection, HEK293T cell aggregates can possibly surpass single-cell suspension in space-time rAAV yield. The formation of HEK293T cell aggregates in a STR system offers a promising approach for scaling up and intensifying rAAV production by triple-plasmid transfection, in comparison with traditional 2D scale-up methods.
Collapse
Affiliation(s)
- Brian Ladd
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Torbjörn Gräslund
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
4
|
Sin WX, Jagannathan NS, Teo DBL, Kairi F, Fong SY, Tan JHL, Sandikin D, Cheung KW, Luah YH, Wu X, Raymond JJ, Lim FLWI, Lee YH, Seng MSF, Soh SY, Chen Q, Ram RJ, Tucker-Kellogg L, Birnbaum ME. A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells. Nat Biomed Eng 2024; 8:1571-1591. [PMID: 38834752 DOI: 10.1038/s41551-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2024] [Indexed: 06/06/2024]
Abstract
The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - N Suhas Jagannathan
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Faris Kairi
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dedy Sandikin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Ka-Wai Cheung
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Yen Hoon Luah
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Xiaolin Wu
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Joshua Jebaraj Raymond
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Advanced Cell Therapy and Research Institute, Singapore (ACTRIS), Consortium for Clinical Research and Innovation, Singapore (CRIS), Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Michaela Su-Fern Seng
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rajeev J Ram
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| | - Michael E Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Gao C, Zhang W, Zhao L, Tan WS. A novel approach for perfusion process design based on a "Grey-Box" kinetic model. Bioprocess Biosyst Eng 2024; 47:2011-2025. [PMID: 39251449 DOI: 10.1007/s00449-024-03082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the "theoretically optimal" operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 107 cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 108 cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.
Collapse
Affiliation(s)
- Chenxi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weijian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai BioEngine Sci-Tech CO., LTD, Shanghai, 201203, China
| |
Collapse
|
6
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
7
|
Kretzmer C, Reger K, Balassi V, Pham QL, Johns M, Peters ST, Petersen A, Mahadevan J, Gustin J, Borgschulte T, Razafsky D. Chemical and Genetic Modulation of Complex I of the Electron Transport Chain Enhances the Biotherapeutic Protein Production Capacity of CHO Cells. Cells 2023; 12:2661. [PMID: 37998396 PMCID: PMC10670226 DOI: 10.3390/cells12222661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein production, CHOZN® GS-/- cell lines were screened with 1280 small molecules, and two were identified, forskolin and BrdU, which increased productivity by ≥40%. While it is possible to incorporate these small molecules into a commercial-scale process, doing so may not be financially feasible or could raise regulatory concerns related to the purity of the final drug substance. To circumvent these issues, RNA-Seq was performed to identify transcripts which were up- or downregulated upon BrdU treatment. Subsequent Reactome pathway analysis identified the electron transport chain as an affected pathway. CRISPR/Cas9 was utilized to create missense mutations in two independent components of the electron transport chain and the resultant clones partially recapitulated the phenotypes observed upon BrdU treatment, including the productivity of recombinant therapeutic proteins. Together, this work suggests that BrdU can enhance the productivity of CHO cells by modulating cellular energetics and provides a blueprint for translating data from small molecule chemical screens into genetic engineering targets to improve the performance of CHO cells. This could ultimately lead to more productive host cell lines and a more cost-effective method of supplying medication to patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David Razafsky
- Upstream Research and Development, MilliporeSigma, Saint Louis, MO 63103, USA (A.P.); (J.G.); (T.B.)
| |
Collapse
|
8
|
Geada I, Roldão A, Betenbaugh MJ, Alves PM. Advanced cell technologies: Making protein, cell, and gene therapies a reality. Biotechnol Bioeng 2023; 120:2385-2388. [PMID: 37534587 DOI: 10.1002/bit.28521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Isabelle Geada
- Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Antonio Roldão
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Michael J Betenbaugh
- Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|