1
|
Siarkiewicz P, Luzak B, Michalski R, Artelska A, Szala M, Przygodzki T, Sikora A, Zielonka J, Grzelakowska A, Podsiadły R. Evaluation of a novel pyridinium cation-linked styryl-based boronate probe for the detection of selected inflammation-related oxidants. Free Radic Biol Med 2024; 212:255-270. [PMID: 38122872 DOI: 10.1016/j.freeradbiomed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.
Collapse
Affiliation(s)
- Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Cancer Center Translational Metabolomics Shared Resource, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
2
|
Anju K, Shoba G, Sumita A, Balakumaran MD, Vasanthi R, Kumaran R. Interaction of acridinedione dye with a globular protein in the presence of site selective and site specific binding drugs: Photophysical techniques assisted by molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119814. [PMID: 33932635 DOI: 10.1016/j.saa.2021.119814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Photophysical investigations and molecular docking studies of photoinduced electron transfer (PET) based fluorophores of acridine family with a globular protein, Bovine Serum Albumin (BSA) bound to non-narcotic drugs like phenylbutazone (PB) and flufenamic acid (FA) were carried out in aqueous solution. PB and FA are site specific and site selective drugs, wherein PB predominantly binds at the site (I) whereas FA selectively orients towards site (II) of BSA. Acridinedione (AD) dyes, both resorcinol and dimedone based are hydrophobic in nature and exhibits a combination of both hydrophobic and hydrogen-bonding interactions that are based on the binding sites in BSA. The extent of displacement of AD from the binding sites of BSA by PB and FA are elucidated and established from variation in the fluorescence lifetime and relative amplitude distribution of free and dye bound in site (I) and site (II). The extent of binding affinity of PB-BSA and FA-BSA in the presence of AD is minimal when compared to other site I and II drugs. This is attributed to AD dye bound to several amino acid residues present in BSA such that the dye prefers multiple binding sites in BSA even in the presence of FA and PB. Further, the dye bound to several amino acid residues of BSA ascertains the combination of hydrogen-bonding, hydrophobic interactions, pi-pi and pi-alkyl interaction apart from the binding through sites (I) and (II) from molecular docking methods. The combination of fluorescence tools with molecular modelling techniques provides an excellent approach in determining the stability of these complexes containing competitive guest molecules in the presence of a fluorescence probe and the binding characteristics of dye in a micro heterogeneous environment.
Collapse
Affiliation(s)
- Krishnan Anju
- Department of Chemistry, D.G. Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Gunasekaran Shoba
- Department of Biotechnology, D.G. Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, GokulBagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Anupurath Sumita
- Department of Chemistry, Anna Adarsh College for Women, Anna Nagar, Chennai 600040, Tamil Nadu, India
| | - Manickam Dakshinamoorthi Balakumaran
- Department of Biotechnology, D.G. Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, GokulBagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Rajaraman Vasanthi
- Department of Chemistry, D.G. Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Rajendran Kumaran
- Department of Chemistry, D.G. Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu, India.
| |
Collapse
|