1
|
Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Trung LG, Gwag JS, Tran NT. Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci (China) 2024; 139:569-588. [PMID: 38105077 DOI: 10.1016/j.jes.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam, E-mail: (Hai Bang Truong); Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Thu Loan Doan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam
| | - Nguyen Tien Hoang
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang St., Lien Chieu, Da Nang 550000, Viet Nam
| | - Nguyen Van Tam
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam
| | - Minh Kim Nguyen
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam.
| | - Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Hasan Alzaimoor EF, Khan E. Metal-Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit Rev Anal Chem 2023; 54:3016-3037. [PMID: 37347646 DOI: 10.1080/10408347.2023.2220800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Collapse
Affiliation(s)
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
3
|
Ma S, Shi Y, Xia X, Song Q, Yang J. Cerium-cobalt bimetallic metal-organic frameworks with the mixed ligands for photocatalytic degradation of methylene blue. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Trung LG, Nguyen MK, Hang Nguyen TD, Tran VA, Gwag JS, Tran NT. Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies. RSC Adv 2023; 13:5908-5924. [PMID: 36816065 PMCID: PMC9936357 DOI: 10.1039/d2ra08312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Zeolitic imidazolate framework ZIF-8, a type of metal-organic framework, has diverse applications in multiple catalytic fields due to its outstanding properties. Herein, ZIF-8 photocatalysts with three different morphologies (dodecahedral, pitaya-like, and leaf-like) are successfully synthesized under ambient conditions from zinc salts by altering the volume ratio of methanol and water used as a solvent. The as-synthesized ZIFs have high crystallinity with distinct BET surface areas. The experiments indicate that the ZIFs have high photocatalytic efficiency, in which the leaf-like structure (ZIF-8-F3) is the most efficient in the degradation of reactive black KN-B dye (RB5) under 365 nm UV irradiation. This is due to the efficient inhibition of electron-hole recombination or the higher migration of charge carriers in ZIF-8-F3, thus producing more reactive oxygen species, resulting in greater photocatalytic efficiency. At pH = 11, more than 95% of RB5 is degraded within 2 hours when using 1.0 g L-1 of ZIF-8-F3. Besides, the photocatalytic and kinetic performances of ZIF-8-F3 are also investigated by optimizing the pH, initial RB5 concentration, and dosage of the used catalyst. These ZIF-8-F3 plates have been shown to be a promising material with high photostability and effective reusability, beneficial to various potential applications in environmental remediation issues.
Collapse
Affiliation(s)
- Le Gia Trung
- Department of Physics, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Minh Kim Nguyen
- College of Pharmacy, Chungnam National UniversityYuseongDaejeon 34134Republic of Korea
| | - Thi Dieu Hang Nguyen
- The University of Da Nang, University of Science and Technology (DUT)54 Nguyen Luong BangDa Nang550000Vietnam
| | - Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh UniversityHo Chi Minh City 700000Vietnam,Faculty of Environmental and Food Engineering, Nguyen Tat Thanh UniversityHo Chi Minh City 700000Vietnam
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam .,Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| |
Collapse
|
5
|
Abstract
In the present study, TiO2-montmorillonite (MMT) composites were synthesized hydrothermally under variable conditions, including the TiO2/MMT mass ratio, reaction pH, reaction temperature, and dwelling time. These samples were determined by X-ray photoelectron spectrometry (XPS), ultraviolet–visible spectroscopy% (UV-Vis DRS), electrochemical impedance spectroscopy (EIS), transient photocurrent responses, photoluminescence (PL) spectra, electron paramagnetic resonance (EPR), and N2 adsorption–desorption isotherms. The photocatalytic activity was evaluated as the ability to promote the visible-light-driven degradation of 30 mg/L of aqueous methylene blue, which was maximized for the composite with a TiO2 mass ratio of 30 wt% prepared at a pH of 6, a reaction temperature of 160 °C, and a dwelling time of 24 h (denoted as 30%-TM), which achieved a methylene blue removal efficiency of 95.6%, which was 4.9 times higher than that of pure TiO2. The unit cell volume and crystallite size of 30%-TM were 92.43 Å3 and 9.28 nm, respectively, with a relatively uniform distribution of TiO2 particles on the MMT’s surface. In addition, 30%-TM had a large specific surface area, a strong light absorption capacity, and a high Ti3+ content among the studied catalysts. Thus, the present study provides a basis for the synthesis of composites with controlled structures.
Collapse
|
6
|
Shan C, Zhang X, Ma S, Xia X, Shi Y, Yang J. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Tran NT, Trung LG, Nguyen MK. The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Son Y, Rao PC, Kim J, Park G, Yoon M. Study of Stability and Proton Conductivity of Zn‐based
Metal–Organic
Framework. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Younghu Son
- Department of Chemistry Kyungpook National University Daegu 41566 Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry Kyungpook National University Daegu 41566 Republic of Korea
- Green‐Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Jiyun Kim
- Department of Chemistry Kyungpook National University Daegu 41566 Republic of Korea
| | - Gyungse Park
- Department of Chemistry Kunsan National University Gunsan 54150 Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry Kyungpook National University Daegu 41566 Republic of Korea
- Green‐Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
9
|
Gupta G, Kim M, Lee J, Lee CY. Zinc‐based
Metal Organic Framework Derived From Anthracene and
BODIPY
Chromophores: Synthesis and Photophysical Properties. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| | - Junseong Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| |
Collapse
|
10
|
Lee B, Park J. Effect of Functional Groups on the
I
2
Sorption Kinetics of Isostructural
Metal–Organic
Frameworks. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Byeongchan Lee
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 South Korea
| | - Jinhee Park
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 South Korea
| |
Collapse
|
11
|
Sun Y, Du Q, Wang F, Dramou P, He H. Active metal single-sites based on metal–organic frameworks: construction and chemical prospects. NEW J CHEM 2021. [DOI: 10.1039/d0nj05029f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal single-point is a novel and potential design strategy that has been applied for the development of metal organic frameworks.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qiuzheng Du
- Department of Pharmacy
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Fangqi Wang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Pierre Dramou
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Hua He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| |
Collapse
|
12
|
Kim S, Lee J, Son Y, Yoon M. Study of the Dye Adsorption Kinetics of
Metal–Organic
Frameworks in Aqueous Media. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sungjune Kim
- Department of NanochemistryGachon University Seongnam 13120 Republic of Korea
| | - Jihyun Lee
- Department of NanochemistryGachon University Seongnam 13120 Republic of Korea
| | - Younghu Son
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National University Daegu 41566 Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
13
|
Du X, He H, Du L, Li W, Wang Y, Jiang Q, Yang L, Zhang J, Guo S. Porous Pr(III)-based organic framework for dye-adsorption and photo degradation with (4,5)-c net. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|