1
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
2
|
Zhu Y, Zhang E, Gao H, Shang C, Yin M, Ma M, Liu Y, Zhang X, Li X. Resistomycin Inhibits Wnt/β-Catenin Signaling to Induce the Apoptotic Death of Human Colorectal Cancer Cells. Mar Drugs 2023; 21:622. [PMID: 38132944 PMCID: PMC10745072 DOI: 10.3390/md21120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Resistomycin is a natural antibiotic related to quinone that has been shown to exhibit robust antitumor activity. To further characterize the mechanistic basis for such activity, human colorectal cancer (CRC) cells were selected as a model to explore the role of Wnt/β-catenin signaling in the ability of resistomycin to induce apoptotic cell death. These analyses revealed that resistomycin was able to suppress β-catenin, TCF4, and GSK-3β expression, together with that of the downstream targets c-Myc and survivin. This coincided with elevated cleaved caspase-3 and Bax protein levels and a decline in Bcl-2 content. When β-catenin was silenced, this further enhanced the ability of resistomycin to induce apoptotic CRC cell death, whereas this apoptotic process was partially ablated when cells were treated using lithium chloride to activate Wnt/β-catenin signaling. Overall, these results support a model wherein resistomycin inhibits Wnt/β-catenin signaling within CRC cells, thereby inducing apoptotic death. Further research may be warranted to better clarify the potential utility of this compound as a candidate drug for use in the treatment of patients suffering from this form of cancer.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - E Zhang
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Huan Gao
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Chuangeng Shang
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Mengxiong Yin
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Mingtao Ma
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Yu Liu
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Xuanfeng Zhang
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China; (Y.Z.); (E.Z.); (H.G.); (C.S.); (M.Y.); (M.M.); (Y.L.); (X.Z.)
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
| |
Collapse
|
3
|
Qu M, Li J, Yuan L. Uncovering the action mechanism of homoharringtonine against colorectal cancer by using network pharmacology and experimental evaluation. Bioengineered 2021; 12:12940-12953. [PMID: 34847838 PMCID: PMC8810123 DOI: 10.1080/21655979.2021.2012626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Homoharringtonine (HHT), an Food and Drug Administration (FDA)-approved anti-leukemia drug, exerts anti-tumor activity in several solid tumors, including colorectal cancer (CRC). However, its mechanism of action in CRC progression has not been comprehensively elucidated. The drug-disease targets were obtained using publicly available databases. Protein-protein interaction (PPI) network, Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to reveal the core targets, biological processes and signaling pathways of HHT against CRC. Cell and animal experiments were performed to validate the inhibitory effects of HHT on CRC. A total of 98 overlapping target genes of HHT and CRC were predicted. Through PPI network and topology analysis, we screened out 23 hub genes. Enrichment assays showed 163 biological processes (BP), 18 cell components (CC), 35 molecular functions (MF), and 85 related pathways. Functionally, HHT inhibited CRC cell proliferation, cell cycle progression, colony formation, migration and invasion, and promoted apoptosis. HHT treatment resulted in the inactivation of PI3K/AKT/mTOR signaling in CRC cells. Moreover, activation of PI3K/AKT/mTOR signaling by 740Y-P abated the suppressive effects of HHT on cell malignant phenotypes. Furthermore, HHT repressed CRC tumor growth in nude mice. Our current study demonstrated that HHT repressed CRC progression at least partly by inactivating PI3K/AKT/mTOR signaling pathways, highlighting HHT as a potential therapeutic agent for CRC patients.
Collapse
Affiliation(s)
- Muwen Qu
- Department of Anorectal Branch, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junyi Li
- Department of Surgery, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingling Yuan
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|