1
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
2
|
Jeong DS, Lee HJ, Park YJ, Hwang H, Ma KY, Kim M, Lim JS, Joo SH, Yang J, Shin HS. Langmuir-Blodgett Monolayer of Cobalt Phthalocyanine as Ultralow Loading Single-Atom Catalyst for Highly Efficient H 2O 2 Production. ACS NANO 2023. [PMID: 37991883 DOI: 10.1021/acsnano.3c08424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical production of H2O2 via the two-electron oxygen-reduction reaction (2e- ORR) has been actively studied using systems with atomically dispersed metal-nitrogen-carbon (M-N-C) structures. However, the development of well-defined M-N-C structures that restrict the migration and agglomeration of single-metal sites remains elusive. Herein, we demonstrate a Langmuir-Blodgett (LB) monolayer of cobalt phthalocyanine (CoPc) on monolayer graphene (LB CoPc/G) as a single-metal catalyst for the 2e- ORR. The as-prepared CoPc LB monolayer has a β-form crystalline structure with a lattice space for the facile adsorption of oxygen molecules on the cobalt active sites. The CoPc LB monolayer system provides highly exposed Co atoms in a well-defined structure without agglomeration, resulting in significantly improved catalytic activity, which is manifested by a very high H2O2 production rate per catalyst (31.04 mol gcat-1 h-1) and TOF (36.5 s-1) with constant production stability for 24 hours. To the best of our knowledge, the CoPc LB monolayer system exhibits the highest H2O2 production rate per active site. This fundamental study suggests that an LB monolayer of molecules with single-metal atoms as a well-defined structure works for single-atom catalysts.
Collapse
Affiliation(s)
- Da Sol Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hoon Ju Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Young Jin Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyuntae Hwang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kyung Yeol Ma
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jieun Yang
- Department of Chemistry, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Zheng R, Meng Q, Zhang L, Ge J, Liu C, Xing W, Xiao M. Co-based Catalysts for Selective H 2 O 2 Electroproduction via 2-electron Oxygen Reduction Reaction. Chemistry 2023; 29:e202203180. [PMID: 36378121 DOI: 10.1002/chem.202203180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical production of hydrogen peroxide (H2 O2 ) via two-electron oxygen reduction reaction (ORR) process is emerging as a promising alternative method to the conventional anthraquinone process. To realize high-efficiency H2 O2 electrosynthesis, robust and low cost electrocatalysts have been intensively pursued, among which Co-based catalysts attract particular research interests due to the earth-abundance and high selectivity. Here, we provide a comprehensive review on the advancement of Co-based electrocatalyst for H2 O2 electroproduction. The fundamental chemistry of 2-electron ORR is discussed firstly for guiding the rational design of electrocatalysts. Subsequently, the development of Co-based electrocatalysts involving nanoparticles, compounds and single atom catalysts is summarized with the focus on active site identification, structure regulation and mechanism understanding. Moreover, the current challenges and future directions of the Co-based electrocatalysts are briefly summarized in this review.
Collapse
Affiliation(s)
- Ruixue Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Qinglei Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Li Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Junjie Ge
- School of Chemistry and Material Science, University of Science and Technology of China Hefei, 230026, Anhui, P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
4
|
Zhang Y, Wang H, Liu Y, Niu B, Li W. Preparation of conductive polyaniline hydrogels co‐doped with hydrochloric acid/phytic acid and their application in Ag
NPs
@
PA
/
GCE
biosensor for
H
2
O
2
detection. J Appl Polym Sci 2023. [DOI: 10.1002/app.53686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yanwei Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Hong Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Yaru Liu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Baolong Niu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Wenfeng Li
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| |
Collapse
|
5
|
Jia Y, Xue Z, Yang J, Liu Q, Xian J, Zhong Y, Sun Y, Zhang X, Liu Q, Yao D, Li G. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaling Jia
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (iCeMS) Kyoto University Kyoto 606–8501 Japan
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Daoxin Yao
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Jia Y, Xue Z, Yang J, Liu Q, Xian J, Zhong Y, Sun Y, Zhang X, Liu Q, Yao D, Li G. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angew Chem Int Ed Engl 2021; 61:e202110838. [PMID: 34716639 DOI: 10.1002/anie.202110838] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Accurately regulating the selectivity of the oxygen reduction reaction (ORR) is crucial to renewable energy storage and utilization, but challenging. A flexible alteration of ORR pathways on atomically dispersed Zn sites towards high selectivity ORR can be achieved by tailoring the coordination environment of the catalytic centers. The atomically dispersed Zn catalysts with unique O- and C-coordination structure (ZnO3 C) or N-coordination structure (ZnN4 ) can be prepared by varying the functional groups of corresponding MOF precursors. The coordination environment of as-prepared atomically dispersed Zn catalysts was confirmed by X-ray absorption fine structure (XAFs). Notably, the ZnN4 catalyst processes a 4 e- ORR pathway to generate H2 O. However, controllably tailoring the coordination environment of atomically dispersed Zn sites, ZnO3 C catalyst processes a 2 e- ORR pathway to generate H2 O2 with a near zero overpotential and high selectivity in 0.1 M KOH. Calculations reveal that decreased electron density around Zn in ZnO3 C lowers the d-band center of Zn, thus changing the intermediate adsorption and contributing to the high selectivity towards 2 e- ORR.
Collapse
Affiliation(s)
- Yaling Jia
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Daoxin Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|