1
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Lee M, Lee SY, Kang MH, Won TK, Kang S, Kim J, Park J, Ahn DJ. Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films. Nat Commun 2024; 15:908. [PMID: 38291035 PMCID: PMC10827800 DOI: 10.1038/s41467-024-45234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Ice crystals at low temperatures exhibit structural polymorphs including hexagonal ice, cubic ice, or a hetero-crystalline mixture of the two phases. Despite the significant implications of structure-dependent roles of ice, mechanisms behind the growths of each polymorph have been difficult to access quantitatively. Using in-situ cryo-electron microscopy and computational ice-dynamics simulations, we directly observe crystalline ice growth in an amorphous ice film of nanoscale thickness, which exhibits three-dimensional ice nucleation and subsequent two-dimensional ice growth. We reveal that nanoscale ice crystals exhibit polymorph-dependent growth kinetics, while hetero-crystalline ice exhibits anisotropic growth, with accelerated growth occurring at the prismatic planes. Fast-growing facets are associated with low-density interfaces that possess higher surface energy, driving tetrahedral ordering of interfacial H2O molecules and accelerating ice growth. These findings, based on nanoscale observations, improve our understanding on early stages of ice formation and mechanistic roles of the ice interface.
Collapse
Affiliation(s)
- Minyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate school of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- The w:i Interface Augmentation Center, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, 14662, Republic of Korea
| | - Tae Kyung Won
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- The w:i Interface Augmentation Center, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, 16229, Republic of Korea.
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- KU-KIST Graduate school of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
- The w:i Interface Augmentation Center, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Kim S, Park S, Kim M, Jeong S. Synthesis of single‐crystalline
InP
tetrapod nanocrystals via addition of
ZnCl
2
. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Sunghu Kim
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
| | - Seongmin Park
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| | - Meeree Kim
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| | - Sohee Jeong
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| |
Collapse
|