Seiß M, Lorenz J, Schmitz S, Moors M, Börner M, Monakhov KY. Synthesis and structures of cobalt-expanded zirconium- and cerium-oxo clusters as precursors for mixed-metal oxide thin films.
Dalton Trans 2024;
53:8454-8462. [PMID:
38686658 DOI:
10.1039/d4dt00328d]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transforming current complementary metal-oxide-semiconductor (CMOS) technology to fabricate memory chips and microprocessors into environmentally friendlier electronics requires the development of new approaches to resource- and energy-efficient electron transport and switching materials. Metal and multi-metal oxide layers play a key role in high-end technical applications. However, these layers are commonly produced through high-energy and high-temperature procedures. Herein, we demonstrate our first attempts to obtain stimuli-responsive mixed-metal oxide thin films from solution-processed molecular precursors under milder conditions. The molecular compounds of interest were prepared by one-pot reactions of a CoII carboxylate complex, triethylamine (Et3N), N-butyldiethanolamine (H2bda), and a hexanuclear complex [Ce6O4(OH)4(piv)12] (Hpiv = pivalic acid) or [Zr6O4(OH)4(ib)12(H2O)]·3Hib (Hib = isobutyric acid) in acetonitrile solution. The resulting charge-neutral, heterometallic coordination compounds display a ligand-supported pentanuclear {CeIV3CoIII2} core (in 1) and a dodecanuclear {ZrIV6CoII6} core (in 2), exhibiting thermal stability up to ca. 100 °C in air. Compound 2 was deposited and analyzed on Au(111) and SiO2/Si(100) surfaces to explore its potential as a single-molecule precursor for the preparation of atomically precise, complex mixed-metal oxide thin films. The adsorption characteristics of it demonstrate the ability to form stable agglomerates on the investigated surfaces.
Collapse