1
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
2
|
Farhana R, Lei R, Pham K, Derrien V, Cedeño J, Rodriquez V, Bernad S, Lima FF, Miksovska J. Globin X: A highly stable intrinsically hexacoordinate globin. J Inorg Biochem 2022; 236:111976. [PMID: 36058051 DOI: 10.1016/j.jinorgbio.2022.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Several novel members of the vertebrate globin family were recently discovered with unique structural features that are not found in traditional penta-coordinate globins. Here we combine structural tools to better understand and recognize molecular determinants that contribute to the stability of hexacoordinate globin X (GbX) from Danio rerio (zebrafish). pH-induced unfolding data indicates increased stability of GbX with pHmid of 1.9 ± 0.1 for met GbXWT, 2.4 ± 0.1 for met GbXC65A, and 3.4 ± 0.1 for GbXH90V. These results are in good agreement with GbX unfolding experiments using GuHCl, where a ΔGunf 13.8 ± 2.5 kcal mol-1 and 16.3 ± 2.6 kcal mol-1 are observed for metGbXWT, and metGbXC65A constructs, respectively, and diminished stability is measured for GbXH90V, ΔGunf = 9.5 ± 3.6 kcal mol-1. The metGbXWT and metGbXC65A also exhibit high thermal stability (melting points of 118 °C and 107 °C, respectively). Native ion mobility - mass spectrometry (IM-MS) experiments showed a narrow charge state distribution (9-12+) characteristics of a native, structured protein; a single mobility band was observed for the native states. Collision induced unfolding IM-MS experiments showed a two-state transition, in good agreement with the solution studies. GbXWT retains the heme over a wide range of charge states, suggesting strong interactions between the prosthetic group and the apoprotein. The above results indicate that in addition to the disulfide bond and the heme iron hexa-coordination, other structural determinants enhance stability of this protein.
Collapse
Affiliation(s)
- Rifat Farhana
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Ruipeng Lei
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Valerie Derrien
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Jonathan Cedeño
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Veronica Rodriquez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Sophie Bernad
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Francisco Fernandez Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Biomedical Science Institute, Florida International University, Miami, FL, United States of America
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Biomedical Science Institute, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
3
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
4
|
Affiliation(s)
- Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| |
Collapse
|
5
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
6
|
Penta- and hexa-coordinate ferric hemoglobins display distinct pH titration profiles measured by Soret peak shifts. Anal Biochem 2016; 510:120-128. [DOI: 10.1016/j.ab.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022]
|
7
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
8
|
Zhang L, Andersen EME, Khajo A, Magliozzo RS, Koder RL. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein. Biochemistry 2013; 52:447-55. [PMID: 23249163 DOI: 10.1021/bi301066z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
9
|
Zhang L, Anderson JLR, Ahmed I, Norman JA, Negron C, Mutter AC, Dutton PL, Koder RL. Manipulating cofactor binding thermodynamics in an artificial oxygen transport protein. Biochemistry 2011; 50:10254-61. [PMID: 22004125 DOI: 10.1021/bi201242a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the mutational analysis of an artificial oxygen transport protein, HP7, which operates via a mechanism akin to that of human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which is uncharged, increases the affinity of the distal histidine ligand by a factor of 13. Paradoxically, it also decreases heme binding affinity by a factor of 5 in the reduced state and 60 in the oxidized state. Application of a three-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates for that. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, New York 10031, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lepeshkevich SV, Biziuk SA, Lemeza AM, Dzhagarov BM. The kinetics of molecular oxygen migration in the isolated α chains of human hemoglobin as revealed by molecular dynamics simulations and laser kinetic spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1279-88. [DOI: 10.1016/j.bbapap.2011.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/16/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
|
11
|
Jayaraman T, Tejero J, Chen BB, Blood AB, Frizzell S, Shapiro C, Tiso M, Hood BL, Wang X, Zhao X, Conrads TP, Mallampalli RK, Gladwin MT. 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J Biol Chem 2011; 286:42679-42689. [PMID: 21965683 DOI: 10.1074/jbc.m111.271973] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin protects neurons from hypoxia in vitro and in vivo; however, the underlying mechanisms for this effect remain poorly understood. Most of the neuroglobin is present in a hexacoordinate state with proximal and distal histidines in the heme pocket directly bound to the heme iron. At equilibrium, the concentration of the five-coordinate neuroglobin remains very low (0.1-5%). Recent studies have shown that post-translational redox regulation of neuroglobin surface thiol disulfide formation increases the open probability of the heme pocket and allows nitrite binding and reaction to form NO. We hypothesized that the equilibrium between the six- and five-coordinate states and secondary reactions with nitrite to form NO could be regulated by other hypoxia-dependent post-translational modification(s). Protein sequence models identified candidate sites for both 14-3-3 binding and phosphorylation. In both in vitro experiments and human SH-SY5Y neuronal cells exposed to hypoxia and glucose deprivation, we observed that 1) neuroglobin phosphorylation and protein-protein interactions with 14-3-3 increase during hypoxic and metabolic stress; 2) neuroglobin binding to 14-3-3 stabilizes and increases the half-life of phosphorylation; and 3) phosphorylation increases the open probability of the heme pocket, which increases ligand binding (CO and nitrite) and accelerates the rate of anaerobic nitrite reduction to form NO. These data reveal a series of hypoxia-dependent post-translational modifications to neuroglobin that regulate the six-to-five heme pocket equilibrium and heme access to ligands. Hypoxia-regulated reactions of nitrite and neuroglobin may contribute to the cellular adaptation to hypoxia.
Collapse
Affiliation(s)
- Thottala Jayaraman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Bill B Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Arlin B Blood
- Division of Neonatology, Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, California 92354
| | - Sheila Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Calli Shapiro
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mauro Tiso
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Brian L Hood
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xunde Wang
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuejun Zhao
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Thomas P Conrads
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
12
|
Xu J, Yin G, Du W. Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation. Proteins 2010; 79:191-202. [DOI: 10.1002/prot.22872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Combined crystallographic and spectroscopic analysis ofTrematomus bernacchiihemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Biopolymers 2009; 91:1117-25. [DOI: 10.1002/bip.21206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Xu J, Li L, Yin G, Li H, Du W. Ligand orientation of human neuroglobin obtained from solution NMR and molecular dynamics simulation as compared with X-ray crystallography. J Inorg Biochem 2009; 103:1693-701. [PMID: 19850349 DOI: 10.1016/j.jinorgbio.2009.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
Neuroglobin, a new member of hemoprotein family, can reversibly bind oxygen and take part in many biological processes such as enzymatic reaction, signal transduction and the mitochondria function. Different from myoglobin and hemoglobin, it has a hexacoordinated heme environment, with histidyl imidazole of proximal His(96)(F8) and distal His(64)(E7) directly bound to the metal ion. In the present work, solution (1)H NMR spectroscopy was employed to investigate the electronic structure of heme center of wild-type met-human neuroglobin. The resonances of heme protons and key residues in the heme pocket were assigned. Two heme orientations resulting from a 180 degrees rotation about the alpha-gamma-meso axis with a population ratio about 2:1 were observed. Then the (1)H NMR chemical shifts of the ferriheme methyl groups were used to predict orientations of the axial ligand. The obtained axial ligand plane angle phi is consistent with that from the molecular dynamics simulation but not with those from the crystal data. Compared with mouse neuroglobin, the obtained average ligand orientation of human neuroglobin reflects the changeability of heme environment for the Ngb family.
Collapse
Affiliation(s)
- Jia Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | | | | | | | | |
Collapse
|
15
|
Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 2008; 102:1777-82. [PMID: 18599123 DOI: 10.1016/j.jinorgbio.2008.05.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/01/2008] [Accepted: 05/19/2008] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that the reaction of nitrite with deoxygenated hemoglobin and myoglobin contributes to the generation of nitric oxide and S-nitrosothiols in vivo under conditions of low oxygen availability. We have investigated whether ferrous neuroglobin and cytoglobin, the two hexacoordinate globins from vertebrates expressed in brain and in a variety of tissues, respectively, also react with nitrite under anaerobic conditions. Using absorption spectroscopy, we find that ferrous neuroglobin and nitrite react with a second-order rate constant similar to that of myoglobin, whereas the ferrous heme of cytoglobin does not react with nitrite. Deconvolution of absorbance spectra shows that, in the course of the reaction of neuroglobin with nitrite, ferric Fe(III) heme is generated in excess of nitrosyl Fe(II)-NO heme as due to the low affinity of ferrous neuroglobin for nitric oxide. By using ferrous myoglobin as scavenger for nitric oxide, we find that nitric oxide dissociates from ferrous neuroglobin much faster than previously appreciated, consistently with the decay of the Fe(II)-NO product during the reaction. Both neuroglobin and cytoglobin are S-nitrosated when reacting with nitrite, with neuroglobin showing higher levels of S-nitrosation. The possible biological significance of the reaction between nitrite and neuroglobin in vivo under brain hypoxia is discussed.
Collapse
|
16
|
Fittipaldi M, García-Rubio I, Trandafir F, Gromov I, Schweiger A, Bouwen A, Van Doorslaer S. A multi-frequency pulse EPR and ENDOR approach to study strongly coupled nuclei in frozen solutions of high-spin ferric heme proteins. J Phys Chem B 2008; 112:3859-70. [PMID: 18321089 DOI: 10.1021/jp709854x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In spite of the tremendous progress in the field of pulse electron paramagnetic resonance (EPR) in recent years, these techniques have been scarcely used to investigate high-spin (HS) ferric heme proteins. Several technical and spin-system-specific reasons can be identified for this. Additional problems arise when no single crystals of the heme protein are available. In this work, we use the example of a frozen solution of aquometmyoglobin (metMb) to show how a multi-frequency pulse EPR approach can overcome these problems. In particular, the performance of the following pulse EPR techniques are tested: Davies electron nuclear double resonance (ENDOR), hyperfine correlated ENDOR (HYEND), electron-electron double resonance (ELDOR)-detected NMR, and several variants of hyperfine sublevel correlation (HYSCORE) spectroscopy including matched and SMART HYSCORE. The pulse EPR experiments are performed at X-, Q- and W-band microwave frequencies. The advantages and drawbacks of the different methods are discussed in relation to the nuclear interaction that they intend to reveal. The analysis of the spectra is supported by several simulation procedures, which are discussed. This work focuses on the analysis of the hyperfine and nuclear-quadrupole tensors of the strongly coupled nuclei of the first coordination sphere, namely, the directly coordinating heme and histidine nitrogens and the 17O nucleus of the distal water ligand. For the latter, 17O-isotope labeling was used. The accuracy of our results and the spectral resolution are compared in detail to an earlier single-crystal continuous-wave ENDOR study on metMb, and it will be shown how additional information can be obtained from the multi-frequency approach. The current work is therefore prone to become a template for future EPR/ENDOR investigations of HS ferric heme proteins for which no single crystals are available.
Collapse
Affiliation(s)
- M Fittipaldi
- Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Giuffrè A, Moschetti T, Vallone B, Brunori M. Is neuroglobin a signal transducer? IUBMB Life 2008; 60:410-3. [DOI: 10.1002/iub.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Abbruzzetti S, Grandi E, Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Cacciatori E, Dominici P, Viappiani C. Ligand migration in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. J Phys Chem B 2007; 111:12582-90. [PMID: 17924689 DOI: 10.1021/jp074954o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AHb1 is a hexacoordinated type 1 nonsymbiotic hemoglobin recently discovered in Arabidopsis thaliana. To gain insight into the ligand migration inside the protein, we studied the CO rebinding kinetics of AHb1 encapsulated in silica gels, in the presence of glycerol. The CO rebinding kinetics after nanosecond laser flash photolysis exhibits complex ligand migration patterns, consistent with the existence of discrete docking sites in which ligands can temporarily be stored before rebinding to the heme at different times. This finding may be of relevance to the physiological NO dioxygenase activity of this protein, which requires sequential binding of two substrates, NO and O2, to the heme.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, NEST CNR-INFM, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nardini M, Pesce A, Milani M, Bolognesi M. Protein fold and structure in the truncated (2/2) globin family. Gene 2007; 398:2-11. [PMID: 17532150 DOI: 10.1016/j.gene.2007.02.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/02/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Analysis of amino acids sequences and protein folds has recently unraveled the structural bases and details of several proteins from the recently discovered "truncated hemoglobin" family. The analysis here presented, in agreement with previous surveys, shows that truncated hemoglobins can be classified in three main groups, based on their structural properties. Crystallographic analyses have shown that all three groups adopt a 2-on-2 alpha-helical sandwich fold, resulting from apparent editing of the classical 3-on-3 alpha-helical sandwich of vertebrate and invertebrate conventional globins. Specific structural features distinguish each of the three groups. Among these, a protein matrix tunnel system is typical of group I, a Trp residue at the G8 topological site is conserved in groups II and III, and TyrB10 is almost invariant through the three groups. A strongly intertwined network of hydrogen bonds stabilizes the heme bound ligand, despite variability of the heme distal residues observed in the different proteins considered. Details of ligand recognition in the three groups are discussed at the light of residue conservation and of differing ligand diffusion pathways to the heme. Based on structural analyses of the family-specific fold, we endorse a recent proposal of leaving the "truncated hemoglobins" term, that does not represent properly the observed 2-on-2 alpha-helical sandwich fold, and adopting the simple "2/2Hb" term to concisely address this protein family.
Collapse
Affiliation(s)
- Marco Nardini
- Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, I-20131 Milano, Italy
| | | | | | | |
Collapse
|
20
|
Mouawad L, Tetreau C, Abdel-Azeim S, Perahia D, Lavalette D. CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations. Protein Sci 2007; 16:781-94. [PMID: 17400927 PMCID: PMC2206643 DOI: 10.1110/ps.062374707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous laser flash photolysis investigations between 100 and 300 K have shown that the kinetics of CO rebinding with cytochrome P450(cam)(camphor) consist of up to four different processes revealing a complex internal dynamics after ligand dissociation. In the present work, molecular dynamics simulations were undertaken on the ternary complex P450(cam)(cam)(CO) to explore the CO migration pathways, monitor the internal cavities of the protein, and localize the CO docking sites. One trajectory of 1 nsec with the protein in a water box and 36 trajectories of 1 nsec in the vacuum were calculated. In each trajectory, the protein contained only one CO ligand on which no constraints were applied. The simulations were performed at 200, 300, and 320 K. The results indicate the presence of seven CO docking sites, mainly hydrophobic, located in the same moiety of the protein. Two of them coincide with xenon binding sites identified by crystallography. The protein matrix exhibits eight persistent internal cavities, four of which corresponding to the ligand docking sites. In addition, it was observed that water molecules entering the protein were mainly attracted into the polar pockets, far away from the CO docking sites. Finally, the identified CO migration pathways provide a consistent interpretation of the experimental rebinding kinetics.
Collapse
Affiliation(s)
- Liliane Mouawad
- Inserm U759, Institut Curie-Recherche, Bâtiment 112, Université Paris-Sud, 91405 Orsay cedex, France.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The discovery that a myoglobin-like hemeprotein (called neuroglobin) is expressed in our brain raised considerable curiosity from the standpoints of biochemistry and pathophysiology alike. Neuroglobin is involved in neuroprotection from damage due to hypoxia or ischemia in vitro and in vivo; overexpression of neuroglobin ameliorates the recovery from stroke in experimental animals. The mechanism underlying this remarkable effect is still mysterious. Structural studies revealed that neuroglobin has a typical globin fold, and despite being hexacoordinated, it binds reversibly O2, CO, and NO, undergoing a substantial conformational change of the heme and of the protein. The possible mechanisms involved in neuroprotection are briefly reviewed. Neuroglobin is unlikely to be involved in O2 transport (like myoglobin), although it seems to act as a sensor of the O2/NO ratio in the cell, possibly regulating the GDP/GTP exchange rate forming a specific complex with the G(alpha beta gamma)-protein when oxidized but not when bound to a gaseous ligand. Thus it appears that neuroglobin is a stress-responsive sensor for signal transduction in the brain, mediated by a ligand-linked conformational change of the protein.
Collapse
Affiliation(s)
- M Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences, University of Rome La Sapienza, Rome, Italy.
| | | |
Collapse
|
22
|
Sottini S, Abbruzzetti S, Spyrakis F, Bettati S, Ronda L, Mozzarelli A, Viappiani C. Geminate rebinding in R-state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets. J Am Chem Soc 2006; 127:17427-32. [PMID: 16332093 DOI: 10.1021/ja056101k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biphasic geminate rebinding of CO to myoglobin upon flash photolysis has been associated to ligand distribution in hydrophobic cavities, structurally detected by time-resolved crystallography, xenon occupancy, and molecular simulations. We show that the time course of CO rebinding to human hemoglobin also exhibits a biphasic geminate rebinding when the protein is entrapped in wet nanoporous silica gel. A simple branched kinetic scheme, involving the bound state A, the primary docking site C, and a secondary binding site B was used to calculate the microscopic rates and the time-dependent population of the intermediate species. The activation enthalpies of the associated transitions were determined in the absence and presence of 80% glycerol. Potential hydrophobic docking cavities within the alpha and beta chains of hemoglobin were identified by computational modeling using xenon as a probe. A hydrophobic pocket on the distal side of the heme, corresponding to Xe4 in Mb, and a nearby site that does not have a correspondence in Mb were detected. Neither potential xenon sites on the proximal side nor a migration channel from the distal to proximal site was located. The small enthalpic barriers between states B and C are in very good agreement with the location of the xenon sites on the distal side. Furthermore, the connection between the two xenon sites is relatively open, explaining why the decreased mobility of the protein with viscosity only slightly perturbs the energetics of ligand migration between the two sites.
Collapse
Affiliation(s)
- Silvia Sottini
- Dipartimento di Fisica, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Fraser J, Vieira de Mello L, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci U S A 2006; 103:2977-81. [PMID: 16469844 PMCID: PMC1413783 DOI: 10.1073/pnas.0508270103] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Indexed: 11/18/2022] Open
Abstract
Myoglobin (Myg) is an oxygen-binding hemoprotein that is widely thought to be expressed exclusively in oxidative skeletal and cardiac myocytes, where it plays a key role in coping with chronic hypoxia. We now show in a hypoxia-tolerant fish model, that Myg is also expressed in a range of other tissues, including liver, gill, and brain. Moreover, expression of Myg transcript was substantially enhanced during chronic hypoxia, the fold-change induction being far greater in liver than muscle. By using 2D gel electrophoresis, we have confirmed that liver expresses a protein corresponding to the Myg-1 transcript and that it is significantly up-regulated during hypoxia. We have also discovered a second, unique Myg isoform, distinct from neuroglobin, which is expressed exclusively in the neural tissue but whose transcript expression was unaffected by environmental hypoxia. Both observations of nonmuscle expression and a brain-specific isoform are unprecedented, indicating that Myg may play a much wider role than previously understood and that Myg might function in the protection of tissues from deep hypoxia and ischemia as well as in reoxygenation and reperfusion injury.
Collapse
Affiliation(s)
- Jane Fraser
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Luciane Vieira de Mello
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; and
| | - Deborah Ward
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Huw H. Rees
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daryl R. Williams
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Yongchang Fang
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil 70770-900
| | - Andrew Brass
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil 70770-900
| | - Andrew Y. Gracey
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrew R. Cossins
- *School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
24
|
Stagner JI, Parthasarathy SN, Wyler K, Parthasarathy RN. Protection From Ischemic Cell Death by the Induction of Cytoglobin. Transplant Proc 2005; 37:3452-3. [PMID: 16298626 DOI: 10.1016/j.transproceed.2005.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Methods to reduce beta-cell loss after islet isolation and transplantation must be developed if islet transplantation is to become a preferred treatment for diabetes. Most recent research has focused on the reduction of toxicity from immunosuppressants and the enhancement of revascularization by growth factors such as vascular endothelial growth factor. Cytoglobin is an intracellular oxygen-binding protein found in islet beta-cells, inducible by hypoxia. It is our hypothesis that cytoglobin induction and overexpression may improve survival and function of transplanted islets by preventing ischemic cell death. Lewis rat islets and MIN6 cells were transfected with the cytoglobin gene. Control and transfected cells and islets were held for 4 hours at 20% oxygen before glucose challenge. Another group of islets and cells was held for 4 hours at 20% and then 1% oxygen prior to glucose challenge. Untreated or transfected Lewis rat islets (n = 800) were transplanted beneath the renal capsule of streptozotocin diabetic Lewis rats. In another study, Sprague-Dawley islets were transfected and transplanted into streptozotocin diabetic Lewis rats. Fasting blood glucose was used as an indicator of islet function and survival. Cytoglobin transfected islets and cells retained the ability to secrete insulin at low oxygen concentrations in contrast to controls. Cytoglobin over expression reduced the development of central islet necrosis after 5 days in tissue culture. Cytoglobin inhibited the onset of immunorejection (14 +/- 2 days) as compared with controls islets (5 +/- 2 days). Cytoglobin induction may be a useful adjunct to islet transplantation.
Collapse
Affiliation(s)
- J I Stagner
- Research Service, Department of Veterans Affairs Medical Center, 800 Zorn Avenue, Louisville, KY 40206, USA
| | | | | | | |
Collapse
|
25
|
Brunori M, Giuffrè A, Nienhaus K, Nienhaus GU, Scandurra FM, Vallone B. Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci U S A 2005; 102:8483-8. [PMID: 15932948 PMCID: PMC1150806 DOI: 10.1073/pnas.0408766102] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb) is a globin expressed in the nervous system of humans and other organisms that is involved in the protection of the brain from ischemic damage. Despite considerable interest, however, the in vivo function of Ngb is still a conundrum. In this paper we report a number of kinetic experiments with O2 and NO that we have interpreted on the basis of the 3D structure of Ngb, now available for human and murine metNgb and murine NgbCO. The reaction of reduced deoxyNgb with O2 and NO is slow (t(1/2) approximately 2 s) and ligand concentration-independent, because exogenous ligand binding can only occur upon dissociation of the distal His-64, which is coordinated to the ferrous heme iron. By contrast, NgbO2 reacts very rapidly with NO, yielding metNgb and NO3- by means of a heme-bound peroxynitrite intermediate. Steady-state amperometric experiments show that Ngb is devoid of O2 reductase and NO reductase activities. To achieve this result, we have set up a protocol for efficient reduction of metNgb using a mixture of FMN and NADH under bright illumination. The results are discussed with reference to a global scheme inspired by the 3D structures of metNgb and NgbCO. Based on the ligand-linked conformational changes discovered by crystallography, the pathways of the reactions with O2 and NO provide a framework that may account for the involvement of Ngb in controlling the activation of a protective signaling mechanism.
Collapse
Affiliation(s)
- Maurizio Brunori
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche Institute of Molecular Biology and Pathology, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Sottini S, Abbruzzetti S, Viappiani C, Bettati S, Ronda L, Mozzarelli A. Evidence for Two Geminate Rebinding States Following Laser Photolysis of R State Hemoglobin Encapsulated in Wet Silica Gels. J Phys Chem B 2005; 109:11411-3. [PMID: 16852394 DOI: 10.1021/jp0514224] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this letter we report the first experimental evidence for CO rebinding to human hemoglobin from multiple geminate states. The analysis of the rebinding kinetics using a maximum entropy method allowed the identification of two distinct rebinding states within the protein matrix, which become populated under conditions of increased viscosity in a silica gel at high glycerol concentration. Our findings suggest the presence of at least two distinct docking sites for the photolyzed ligand. Assuming a minimal four-state model, we estimate the microscopic rates and the activation energies for the elementary processes.
Collapse
|