1
|
Williams JJ, Drew JC, Galindo-Gonzalez S, Robic S, Dinsdale E, Morgan WR, Triplett EW, Burnette JM, Donovan SS, Fowlks ER, Goodman AL, Grandgenett NF, Goller CC, Hauser C, Jungck JR, Newman JD, Pearson WR, Ryder EF, Sierk M, Smith TM, Tosado-Acevedo R, Tapprich W, Tobin TC, Toro-Martínez A, Welch LR, Wilson MA, Ebenbach D, McWilliams M, Rosenwald AG, Pauley MA. Barriers to integration of bioinformatics into undergraduate life sciences education: A national study of US life sciences faculty uncover significant barriers to integrating bioinformatics into undergraduate instruction. PLoS One 2019; 14:e0224288. [PMID: 31738797 PMCID: PMC6860448 DOI: 10.1371/journal.pone.0224288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents—lack of student interest, overly-full curricula, and lack of student preparation—were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.
Collapse
Affiliation(s)
- Jason J. Williams
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Jennifer C. Drew
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, United States of America
| | - Sebastian Galindo-Gonzalez
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL, United States of America
| | - Srebrenka Robic
- Department of Biology, Agnes Scott College, Decatur, GA, United States of America
| | - Elizabeth Dinsdale
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - William R. Morgan
- Department of Biology, College of Wooster, Wooster, OH, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, United States of America
| | - James M. Burnette
- University of California, Riverside, Riverside, CA, United States of America
| | - Samuel S. Donovan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Edison R. Fowlks
- Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
| | - Anya L. Goodman
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | - Nealy F. Grandgenett
- Department of Teacher Education, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Carlos C. Goller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Charles Hauser
- Department of Biological Sciences, Bioinformatics Program, St. Edward’s University, Austin, TX, United States of America
| | - John R. Jungck
- Departments of Biological Sciences and Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | - Jeffrey D. Newman
- Department of Biology, Lycoming College, Williamsport, PA, United States of America
| | - William R. Pearson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Elizabeth F. Ryder
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Michael Sierk
- Bioinformatics Program, Saint Vincent College, Latrobe, PA, United States of America
| | - Todd M. Smith
- Digital World Biology, PMB, Seattle, WA, United States of America
| | - Rafael Tosado-Acevedo
- Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, PR, United States of America
| | - William Tapprich
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Tammy C. Tobin
- Department of Biology, Susquehanna University, Selinsgrove, PA, United States of America
| | - Arlín Toro-Martínez
- Department of Biology, Chemistry, and Environmental Sciences, Inter American University of Puerto Rico, San Germán Campus, San Germán, PR, United States of America
| | - Lonnie R. Welch
- Department of Computer Science, Ohio University, Athens, OH, United States of America
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - David Ebenbach
- Center for New Designs in Learning and Scholarship, Georgetown University, Washington, DC, United States of America
| | - Mindy McWilliams
- Center for New Designs in Learning and Scholarship, Georgetown University, Washington, DC, United States of America
| | - Anne G. Rosenwald
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Mark A. Pauley
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
2
|
Hybrid Two-Component Sensors for Identification of Bacterial Chemoreceptor Function. Appl Environ Microbiol 2019; 85:AEM.01626-19. [PMID: 31492670 DOI: 10.1128/aem.01626-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by β-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and specific for detecting known attractants, and the β-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate.IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.
Collapse
|
3
|
Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated by the Carboxylic Acid Receptor McfP. Appl Environ Microbiol 2019; 85:AEM.01625-19. [PMID: 31471307 DOI: 10.1128/aem.01625-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n-alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n-alcohols that served as growth substrates (C2 to C12) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C2 to C12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C2 and C3 carboxylic acids. Besides being a requirement for the response to n-alcohols, McfP was required for the response of P. putida F1 to pyruvate, l-lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. β-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves.IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n-alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida, and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein.
Collapse
|
4
|
Rodrigo-Peiris T, Xiang L, Cassone VM. A Low-Intensity, Hybrid Design between a "Traditional" and a "Course-Based" Research Experience Yields Positive Outcomes for Science Undergraduate Freshmen and Shows Potential for Large-Scale Application. CBE LIFE SCIENCES EDUCATION 2018; 17:ar53. [PMID: 30335606 PMCID: PMC6755889 DOI: 10.1187/cbe.17-11-0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Based on positive student outcomes, providing research experiences from early undergraduate years is recommended for science, technology, engineering, and mathematics (STEM) majors. To this end, we designed a novel research experience called the "STEMCats Research Experience" (SRE) for a cohort of 119 second-semester freshmen with diverse college preparatory levels, demographics, and academic majors. The SRE targeted student outcomes of enhancing retention in STEM majors, STEM competency development, and STEM academic performance. It was designed as a hybrid of features from apprenticeship-based traditional undergraduate research experience and course-based undergraduate research experience designs, considering five factors: 1) an authentic research experience, 2) a supportive environment, 3) current and future needs for scale, 4) student characteristics and circumstances, and 5) availability and sustainability of institutional resources. Emerging concepts for facilitating and assessing student success and STEM curriculum effectiveness were integrated into the SRE design and outcomes evaluation. Here, we report the efficient and broadly applicable SRE design and, based on the analysis of institutional data and student perceptions, promising student outcomes from its first iteration. Potential improvements for the SRE design and future research directions are discussed.
Collapse
Affiliation(s)
| | - Lin Xiang
- Department of STEM Education, University of Kentucky, Lexington, KY 40506
| | | |
Collapse
|
5
|
Kowalski JR, Hoops GC, Johnson RJ. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology. CBE LIFE SCIENCES EDUCATION 2016; 15:15/4/ar55. [PMID: 27810870 PMCID: PMC5132352 DOI: 10.1187/cbe.16-02-0089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/23/2016] [Indexed: 05/14/2023]
Abstract
Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208
| | - Geoffrey C Hoops
- Department of Chemistry, Butler University, Indianapolis, IN 46208
| | - R Jeremy Johnson
- Department of Chemistry, Butler University, Indianapolis, IN 46208
| |
Collapse
|
6
|
Bowling BV, Schultheis PJ, Strome ED. Implementation and assessment of a yeast orphan gene research project: involving undergraduates in authentic research experiences and progressing our understanding of uncharacterized open reading frames. Yeast 2015; 33:43-53. [PMID: 26460164 DOI: 10.1002/yea.3139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Saccharomyces cerevisiae was the first eukaryotic organism to be sequenced; however, little progress has been made in recent years in furthering our understanding of all open reading frames (ORFs). From October 2012 to May 2015 the number of verified ORFs had only risen from 75.31% to 78%, while the number of uncharacterized ORFs had decreased from 12.8% to 11% (representing > 700 genes still left in this category; http://www.yeastgenome.org/genomesnapshot). Course-based research has been shown to increase student learning while providing experience with real scientific investigation; however, implementation in large, multi-section courses presents many challenges. This study sought to test the feasibility and effectiveness of incorporating authentic research into a core genetics course, with multiple instructors, to increase student learning and progress our understanding of uncharacterized ORFs. We generated a module-based annotation toolkit and utilized easily accessible bioinformatics tools to predict gene function for uncharacterized ORFs within the Saccharomyces Genome Database (SGD). Students were each assigned an uncharacterized ORF, which they annotated using contemporary comparative genomics methodologies, including multiple sequence alignment, conserved domain identification, signal peptide prediction and cellular localization algorithms. Student learning outcomes were measured by quizzes, project reports and presentations, as well as a post-project questionnaire. Our results indicate that the authentic research experience had positive impacts on students' perception of their learning and their confidence to conduct future research. Furthermore, we believe that creation of an online repository and adoption and/or adaptation of this project across multiple researchers and institutions could speed the process of gene function prediction.
Collapse
Affiliation(s)
- Bethany V Bowling
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA
| | - Patrick J Schultheis
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
7
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
8
|
Parales RE, Nesteryuk V, Hughes JG, Luu RA, Ditty JL. Cytosine chemoreceptor McpC in Pseudomonas putida F1 also detects nicotinic acid. MICROBIOLOGY-SGM 2014; 160:2661-2669. [PMID: 25294107 DOI: 10.1099/mic.0.081968-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in Pseudomonas genomes is ongoing, the functions of only a limited number of Pseudomonas chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in Pseudomonas putida F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St Thomas, St Paul, MN, USA
| |
Collapse
|
9
|
Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. MICROBIOLOGY-SGM 2013; 159:1086-1096. [PMID: 23618999 DOI: 10.1099/mic.0.065698-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P. putida strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the P. putida F1 orthologue (locus tag Pput_4520, designated mcfS) of McpS, a known receptor for organic acids in P. putida KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in P. putida F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 mcpS-deletion mutant. Expression of mcfS in the same mcpS deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in P. putida F1.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Grischa Y Chen
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xianxian Liu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Victoria Wu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Pamela Lin
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Juanito V Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|