1
|
Kwon M, Ko SK, Jang M, Kim GH, Ryoo IJ, Son S, Ryu HW, Oh SR, Lee WK, Kim BY, Jang JH, Ahn JS. Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3-dioxygenase 1 activity. J Enzyme Inhib Med Chem 2019; 34:1481-1488. [PMID: 31423846 PMCID: PMC6713164 DOI: 10.1080/14756366.2019.1640218] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan catabolising enzyme, is known as a tumour cell survival factor that causes immune escape in several types of cancer. Flavonoids of Sophora flavescens have a variety of biological benefits for humans; however, cancer immunotherapy effect has not been fully investigated. The flavonoids (1-6) isolated from S. flavescens showed IDO1 inhibitory activities (IC50 4.3-31.4 µM). The representative flavonoids (4-6) of S. flavescens were determined to be non-competitive inhibitors of IDO1 by kinetic analyses. Their binding affinity to IDO1 was confirmed using thermal stability and surface plasmon resonance (SPR) assays. The molecular docking analysis and mutagenesis assay revealed the structural details of the interactions between the flavonoids (1-6) and IDO1. These results suggest that the flavonoids (1-6) of S. flavescens, especially kushenol E (6), as IDO1 inhibitors might be useful in the development of immunotherapeutic agents against cancers.
Collapse
Affiliation(s)
- Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology , Daejeon , Korea
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology , Daejeon , Korea
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation , Cheongju , Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology , Daejeon , Korea
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology , Daejeon , Korea.,Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju , Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology , Daejeon , Korea
| |
Collapse
|
2
|
Emery P, Yezierski EJ, Page RC. Guided inquiry activity linking thermodynamic parameters of protein unfolding to structure using differential scanning fluorimetry data in the biophysical chemistry classroom. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:67-75. [PMID: 30578703 PMCID: PMC6329392 DOI: 10.1002/bmb.21198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/07/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Visualizations are useful tools for helping students to understand chemistry concepts at the particulate level. A classroom activity was developed based on learning theory and evidence-based practices, combining protein visualization with thermodynamic parameters from differential scanning fluorimetry (DSF) data analysis. Coding of student responses showed that many students were able to establish the desired connections among protein structure, thermodynamic parameters, and experimental data analysis, while a few did not recognize all the differences between the folded and unfolded forms of the protein. The activity elicits student prior knowledge through the pre-class activity, has the students examine the interactions within a protein molecule through the PyMOL activity, introduces DSF analysis using the learning cycle through the Guided Inquiry activity, and tests student learning through the post-class activity. Upon completing the activity, the majority of students successfully met the learning goals. © 2018 International Union of Biochemistry and Molecular Biology, 47(1):67-75, 2018.
Collapse
|
3
|
Gary MA, Tanner EA, Davis AA, McFarlin BK. Combined bead-based multiplex detection of RNA and protein biomarkers: Implications for understanding the time course of skeletal muscle injury and repair. Methods 2018; 158:92-96. [PMID: 30472250 DOI: 10.1016/j.ymeth.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
Biological response to skeletal muscle injury time course is generally classified as initial (elevated within first 4-h), delayed (elevated at 24-h), and/or prolonged (elevated at 4-h and sustained to 24-h). Accurate description of this process requires the ability to measure a robust set of RNA and protein biomarkers, yet such an approach is not common and not always feasible. This method proposes a novel experimental approach that focuses on the use of bead-based multiplex detection to measure mRNA, lncRNA, cytokines, soluble cytokine receptors, and myokines at 4-h and 24-h post muscle injury. We used an extreme aerobic exercise session (half-marathon race) to create a consistent muscle injury stimulus via oxidative stress and eccentric contractions. Venous blood samples were analyzed to determine the change in 90 targets. Specifically, we identified 14 mRNA, 2 lncRNA, 4 cytokines, and 5 myokines that had only an initial response (change at 4-h). We identified 2 mRNA, 2 cytokines, 13 soluble cytokine receptors, and 1 myokine that had only a delayed response (change at 24-h). Finally, we identified 18 mRNA, 4 lncRNA, 6 myokines and 15 cytokines that had a prolonged response (change at 4-h and sustained at 24-h). We found 4 targets to be undetectable or having no response relative to muscle injury recovery. These findings demonstrate the interplay between RNA and protein biomarkers in response to skeletal muscle injury. This novel experimental application of bead-based multiplexing is applicable to a variety of clinical models that involve muscle injury and/or wasting.
Collapse
Affiliation(s)
- Melody A Gary
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elizabeth A Tanner
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Asheal A Davis
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA
| | - Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
4
|
Garrett TA, Osmundson J, Isaacson M, Herrera J. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 43:145-153. [PMID: 25735767 DOI: 10.1002/bmb.20844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, New York, 12604
| | - Joseph Osmundson
- Department of Biology, Vassar College, Poughkeepsie, New York, 12604
| | - Marisa Isaacson
- Department of Biology, Vassar College, Poughkeepsie, New York, 12604
| | - Jennifer Herrera
- Department of Chemistry, Vassar College, Poughkeepsie, New York, 12604
| |
Collapse
|