1
|
Mirheydari M, Putta P, Mann EK, Kooijman EE. Interaction of Two Amphipathic α-Helix Bundle Proteins, ApoLp-III and ApoE 3, with the Oil-Aqueous Interface. J Phys Chem B 2021; 125:4746-4756. [PMID: 33939404 DOI: 10.1021/acs.jpcb.1c00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein-lipid interactions govern the structure and function of lipoprotein particles, which transport neutral lipids and other hydrophobic cargo through the blood stream. Apolipoproteins cover the surface of lipoprotein particles, including low-density (LDL) and high-density (HDL) lipoproteins, and determine their function. Previous work has focused on small peptides derived from these apolipoproteins or used such artificial lipid systems as Langmuir monolayers or the lipid disc assay to determine how apolipoproteins interact with the neutral lipid interface. Here, we focus on a recurring protein domain found in many neutral lipid-binding proteins, the amphipathic α-helix bundle. We use liquid droplet tensiometry to investigate protein-lipid interactions on an oil droplet, which mimics the real lipoprotein interface. The N-terminus of apoE 3 and full-length apoLp-III serve as model proteins. We find that each protein interacts with lipid monolayers at the oil-aqueous interface in unique ways. For the first time, we show that helix bundle unfolding is critical for proper protein insertion into the lipid monolayer at the oil-aqueous interface and that specific membrane lipids promote the rebinding of protein upon fluctuation in droplet size. These results shed new light on how amphipathic apolipoprotein α-helix bundles interact with neutral lipid particles.
Collapse
|
2
|
Peng Y, Kelle R, Little C, Michonova E, Kornev KG, Alexov E. pH-Dependent Interactions of Apolipophorin-III with a Lipid Disk. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416520420041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apolipophorin-III (ApoLp-III) is required for stabilization of molecular shuttles of lipid fuels in insects and is found to contribute to the insect immune reaction. Rearrangement of its five [Formula: see text]-helices enables ApoLp-III to reversibly associate with lipids. We investigate computationally the conformational changes of ApoLp-III and the pH-dependence of the binding free energy of ApoLp-III association with a lipid disk. A dominant binding mode along with several minor, low population, modes of the ApoLp-III binding to a lipid disk was identified. The pH-dependence of the binding energy for ApoLp-III with the lipid disk is predicted to be significant, with the pH-optimum at pH[Formula: see text]. The calculations suggest that there are no direct interactions between the lipid head groups and titratable residues of ApoLp-III. In the physiological pH range from 6.0 to 9.0, the binding free energy of ApoLp-III with the lipid disk decreases significantly with respect to its optimal value at pH 8.0 (at pH[Formula: see text], it is 1.02[Formula: see text]kcal/mol and at pH[Formula: see text] it is 0.23[Formula: see text]kcal/mol less favorable than at the optimal pH[Formula: see text]), indicating that the pH is an important regulator of ApoLp-III lipid disk association.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
| | - Rudolfs Kelle
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Erskine College, Due West, SC 29639, USA
| | - Chandler Little
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Erskine College, Due West, SC 29639, USA
| | | | - Kostantin G. Kornev
- Department of Material Sciences and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Material Sciences and Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Silverstein TP, Williamson JC. Liposome permeability probed by laser light scattering. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:239-246. [PMID: 30811851 DOI: 10.1002/bmb.21226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
We have developed a laboratory project in which students prepare liposomes, expose them to hyperosmotic and hypoosmotic solutions, and follow the resulting shrinking and swelling (respectively) with laser light scattering. Each light intensity transient can be fit to an exponential decline or rise, with the decay constant (k) and the amplitude (ΔVmax ) being indirectly related to the kinetics and thermodynamics (respectively) of transmembrane osmotic flux. Students vary the experimental system by changing the types and concentrations of osmolytes such as alcohols, amides, and salts. Students then compare how these changes alter the rate and extent of osmotic flux. This upper division biochemistry laboratory project is a challenging and rewarding one that exposes students to a biomolecule (lipid) and a spectroscopic technique (laser spectroscopy) that are not commonly used in the undergraduate laboratory setting. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):239-246, 2019.
Collapse
|