1
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
2
|
Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MWY, Huang YH, Lin PY, Chao HC, Lu CM, Chen CY. Reinforcement of Environmental DNA Based Methods ( Sensu Stricto) in Biodiversity Monitoring and Conservation: A Review. BIOLOGY 2021; 10:biology10121223. [PMID: 34943137 PMCID: PMC8698464 DOI: 10.3390/biology10121223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Worldwide biodiversity loss points to a necessity of upgrading to a fast and effective monitoring method that can provide quick conservation action. Newly developed environmental DNA (eDNA) based method found to be more cost-effective, non-invasive, quick, and accurate than traditional monitoring (spot identification, camera trapping). Although the eDNA based methods are proliferating rapidly, as a newly developed branch, it needs more standardization and practitioner adaptation. The present study aims to evaluate the eDNA based methods, and their potential achievements in biodiversity monitoring, and conservation for quick practitioners’ adaption. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community-level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique shows a great promise with its high accuracy and authenticity, and will be applicable alone or alongside other methods in the near future. Abstract Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Gobinda Dey
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Caterina M. Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy;
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Michael W. Y. Chan
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Chung-Ming Lu
- Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, Jiayi 62102, Taiwan;
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Correspondence: or ; Tel.: +886-5-2720411 (ext. 66220); Fax: +886-5-2720807
| |
Collapse
|