1
|
Lambeth TR, Julian RR. Efficient Isothiocyanate Modification of Peptides Facilitates Structural Analysis by Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1338-1345. [PMID: 34670075 DOI: 10.1021/jasms.1c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radical-directed dissociation (RDD) is a powerful technique for structural characterization of peptides in mass spectrometry experiments. Prior to analysis, a radical precursor must typically be appended to facilitate generation of a free radical. To explore the use of a radical precursor that can be easily attached in a single step, we modified peptides using a "click" reaction with iodophenyl isothiocyanate. Coupling with amine functional groups proceeds with high yields, producing stable iodophenylthiourea-modified peptides. Photodissociation yields were recorded at 266 and 213 nm for the 2-, 3-, and 4-iodo isomers of the modifier and found to be highest for the 4-iodo isomer in nearly all cases. Fragmentation of the modified peptides following collisional activation revealed favorable losses of the tag, and electronic structure calculations were used to evaluate a potential mechanism involving hydrogen transfer within the thiourea group. Examination of RDD data revealed that 4-iodobenzoic acid, 4-iodophenylthiourea, and 3-iodotyrosine yield similar fragmentation patterns for a given peptide, although differences in fragment abundance are noted. Iodophenyl isothiocyanate labeling in combination with RDD can be used to differentiate isomeric amino acids within peptides, which should facilitate simplified evaluation of isomers present in complex biological samples.
Collapse
Affiliation(s)
- Tyler R Lambeth
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Morano C, Zulueta A, Caretti A, Roda G, Paroni R, Dei Cas M. An Update on Sphingolipidomics: Is Something Still Missing? Some Considerations on the Analysis of Complex Sphingolipids and Free-Sphingoid Bases in Plasma and Red Blood Cells. Metabolites 2022; 12:metabo12050450. [PMID: 35629954 PMCID: PMC9147510 DOI: 10.3390/metabo12050450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The main concerns in targeted “sphingolipidomics” are the extraction and proper handling of biological samples to avoid interferences and achieve a quantitative yield well representing all the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma, at different temperatures and durations, and two derivatization procedures for the conversion of sphingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic conditions were also tested. The protocol that worked better for sphingolipids analysis involved a single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 °C, followed by a 2 h alkaline methanolysis at 38 °C, for the suppression of phospholipids signals. The derivatization of sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not superior to a careful choice of the appropriate column and a full-length elution gradient. Our procedure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids and sphingoid bases under different chromatographic conditions, minding the interferences.
Collapse
Affiliation(s)
- Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Aida Zulueta
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| | - Anna Caretti
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
3
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
4
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Xiao H, Liu P, Zheng S, Wang X, Ding J, Feng Y. Screening of amino acids in dried blood spots by stable isotope derivatization-liquid chromatography-electrospray ionization mass spectrometry. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Simultaneous quantitative analysis of multiple sphingoid bases by stable isotope labeling assisted liquid chromatography-mass spectrometry. Anal Chim Acta 2019; 1082:106-115. [DOI: 10.1016/j.aca.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/11/2023]
|
7
|
Application of 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for the determination of selected biogenic amines by LC-tandem mass spectrometry and 19F NMR. Food Chem 2018; 239:225-233. [DOI: 10.1016/j.foodchem.2017.06.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
|
8
|
Medvedovici A, Bacalum E, David V. Sample preparation for large-scale bioanalytical studies based on liquid chromatographic techniques. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4137] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Andrei Medvedovici
- Faculty of Chemistry, Department of Analytical Chemistry; University of Bucharest; Bucharest Romania
| | - Elena Bacalum
- Research Institute; University of Bucharest; Bucharest Romania
| | - Victor David
- Faculty of Chemistry, Department of Analytical Chemistry; University of Bucharest; Bucharest Romania
| |
Collapse
|
9
|
Manig F, Kuhne K, von Neubeck C, Schwarzenbolz U, Yu Z, Kessler BM, Pietzsch J, Kunz-Schughart LA. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol 2017; 242:30-54. [DOI: 10.1016/j.jbiotec.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
10
|
Oyama T, Negishi E, Onigahara H, Kusano N, Miyoshi Y, Mita M, Nakazono M, Ohtsuki S, Ojida A, Lindner W, Hamase K. Design and synthesis of a novel pre-column derivatization reagent with a 6-methoxy-4-quinolone moiety for fluorescence and tandem mass spectrometric detection and its application to chiral amino acid analysis. J Pharm Biomed Anal 2015; 116:71-9. [DOI: 10.1016/j.jpba.2015.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023]
|
11
|
Chemical derivatization in LC–MS bioanalysis: current & future challenges. Bioanalysis 2015; 7:2443-9. [DOI: 10.4155/bio.15.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Recent development of chemical derivatization in LC–MS for biomedical approaches. Bioanalysis 2015; 7:2489-99. [DOI: 10.4155/bio.15.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
LC–MS/MS is currently the most powerful system in biomedical analysis. At the same time, chemical derivatization is a useful technique to enhance the detection sensitivity of nonionizable or poorly ionizable molecules in LC–MS/MS. Derivatization improves the ionization efficiency, the chromatographic separation and/or the chemical stability. This article presents an overview of the recent development of chemical derivatization reagents and reactions for the quantitative analysis of xenobiotic and endogenous molecules such as pharmaceuticals, amino acids, peptides, proteins, steroids, biomarkers and industrial products by LC–MS.
Collapse
|
13
|
Iwasaki Y, Nakano Y, Mochizuki K, Nomoto M, Takahashi Y, Ito R, Saito K, Nakazawa H. A new strategy for ionization enhancement by derivatization for mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1159-65. [PMID: 21382752 DOI: 10.1016/j.jchromb.2011.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/07/2011] [Accepted: 02/07/2011] [Indexed: 11/29/2022]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure ionization is drastically different from hitherto available analytical methods used to detect polar analytes. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources of MS have contributed to the advancement of LC-MS and LC-MS/MS techniques for the analysis of biological samples. However, one major obstacle is the weak ionization of some analytes in the ESI and APCI techniques. In this review, we introduce high-sensitivity methods using several derivatization reagents for ionization enhancement. We also present an overview of chemical derivatization methods that have been applied to small molecules, such as amino acids and steroids, in biological samples.
Collapse
Affiliation(s)
- Yusuke Iwasaki
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Santa T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2010; 25:1-10. [DOI: 10.1002/bmc.1548] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 12/29/2022]
|
15
|
Compounds having thiourea moiety as derivatization reagents in liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS): synthesis of derivatization reagents for carboxylic acids. Biomed Chromatogr 2010; 25:635-40. [DOI: 10.1002/bmc.1501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/07/2022]
|