1
|
Wang Y, Hou H, Ren Q, Hu H, Yang T, Li X. Natural drug sources for respiratory diseases from Fritillaria: chemical and biological analyses. Chin Med 2021; 16:40. [PMID: 34059098 PMCID: PMC8165352 DOI: 10.1186/s13020-021-00450-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fritillaria naturally grows in the temperate region of Northern Hemisphere and mainly distributes in Central Asia, Mediterranean region, and North America. The dried bulbs from a dozen species of this genus have been usually used as herbal medicine, named Beimu in China. Beimu had rich sources of phytochemicals and have extensively applied to respiratory diseases including coronavirus disease (COVID-19). Fritillaria species have alkaloids that act as the main active components that contribute multiple biological activities, including anti-tussive, expectorant, and anti-asthmatic effects, especially against certain respiratory diseases. Other compounds (terpenoids, steroidal saponins, and phenylpropanoids) have also been identified in species of Fritillaria. In this review, readers will discover a brief summary of traditional uses and a comprehensive description of the chemical profiles, biological properties, and analytical techniques used for quality control. In general, the detailed summary reveals 293 specialized metabolites that have been isolated and analyzed in Fritillaria species. This review may provide a scientific basis for the chemical ecology and metabolomics in which compound identification of certain species remains a limiting step.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, 272000, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Tiechui Yang
- Nin Jiom Medicine Manufactory (Hong Kong) Limited, Hong Kong, 999077, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
2
|
Simultaneous Determination and Pharmacokinetics of Peimine and Peiminine in Beagle Dog Plasma by UPLC-MS/MS after the Oral Administration of Fritillariae ussuriensis Maxim and Fritillariae thunbergii Miq Powder. Molecules 2018; 23:molecules23071573. [PMID: 29958456 PMCID: PMC6100562 DOI: 10.3390/molecules23071573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
A simple and high sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of peimine and peiminine in beagle dog plasma after the oral administration of Fritillariae ussuriensis Maxim and Fritillariae thunbergii Miq powder. Chromatographic separation was achieved on an ACQUIT UPLC® BEH C18 column (1.7 μm, 2.1 × 100 mm) in a gradient elution way with a mobile phase consisting of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.4 mL/min. The plasma samples were prepared by a liquid–liquid extraction (LLE) method with ethyl acetate. The analytes were detected with a triple quadrupole tandem mass spectrometry (MS) in multiple reaction monitoring (MRM) mode and a positive ion electrospray ionization (ESI) of the transitions at m/z 432.4→414.4 for peimine and m/z 430.3→412.3 for peiminine. The method was linear for two analytes over the investigated range with all determined correlation coefficients exceeding 0.9900. The lower limit of quantification (LLOQ) was 0.988 ng/mL for peimine and 0.980 ng/mL for peiminine. The mean extraction recoveries of peimine and peiminine at three quality control samples (QC) levels were ranged from 82.56 to 88.71%, and matrix effects ranged from 92.06 to 101.2%. The intra-day and inter-day precision and accuracy were within the acceptable limits at LLOQ and QC levels. The method was effectively and successfully applied to the pharmacokinetics of peimine and peiminine after oral administration of powder to beagle dogs. The obtained results may be help to guide the clinical application of Fritillaria ussuriensis Maxim and Fritillaria thunbergii Miq.
Collapse
|
3
|
Lyu C, Zhang Y, Zhou W, Zhang S, Kou F, Wei H, Zhang N, Zuo Z. Gender-Dependent Pharmacokinetics of Veratramine in Rats: In Vivo and In Vitro Evidence. AAPS JOURNAL 2016; 18:432-44. [PMID: 26791530 DOI: 10.1208/s12248-016-9870-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Veratramine, a major alkaloid from Veratrum nigrum L., has distinct anti-tumor and anti-hypertension effects. Our previous study indicated that veratramine had severe toxicity toward male rats. In order to elucidate the underling mechanism, in vivo pharmacokinetic experiments and in vitro mechanistic studies have been conducted. Veratramine was administrated to male and female rats intravenously via the jugular vein at a dose of 50 μg/kg or orally via gavage at 20 mg/kg. As a result, significant pharmacokinetic differences were observed between male and female rats after oral administration with much lower concentrations of veratramine and 7-hydroxyl-veratramine and higher concentrations of veratramine-3-O-sulfate found in the plasma and urine of female rats. The absolute bioavailability of veratramine was 0.9% in female rats and 22.5% in male rats. Further experiments of veratramine on Caco-2 cell monolayer model and in vitro incubation with GI content or rat intestinal subcellular fractions demonstrated that its efficient passive diffusion mediated absorption with minimal intestinal metabolism, suggesting no gender-related difference during its absorption process. When veratramine was incubated with male or female rat liver microsomes/cytosols, significant male-predominant formation of 7-hydroxyl-veratramine and female-predominant formation of veratramine-3-O-sulfate were observed. In conclusion, the significant gender-dependent hepatic metabolism of veratramine could be the major contributor to its gender-dependent pharmacokinetics.
Collapse
Affiliation(s)
- Chunming Lyu
- Technology Laboratory Center, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Wenbin Zhou
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shen Zhang
- Department of Rehabilitation, Changzheng Hospital Affiliated to Second Military Medicine University, Shanghai, 200003, People's Republic of China
| | - Fang Kou
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hai Wei
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Ning Zhang
- Technology Laboratory Center, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| |
Collapse
|