1
|
Qi P, Li P, Qiao L, Xue H, Ma Y, Wei S, Yang X, Zhang H, Zhang Y, Wang Y, He S, Quan H, Zhang W. Simultaneous quantification of pirarubicin, doxorubicin, cyclophosphamide, and vincristine in human plasma of patients with non-Hodgkin's lymphoma by LC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123754. [PMID: 37229818 DOI: 10.1016/j.jchromb.2023.123754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Pirarubicin (THP), doxorubicin (DOX), cyclophosphamide (CTX), and vincristine (VCR) are widely used in the treatment of patients with non-Hodgkin's Lymphoma. Herein, a precise and sensitive method was developed for the determination of THP, DOX, CTX and VCR in human plasma by high-performance liquid-chromatography-tandem mass spectrometry (LC-MS/MS). Liquid-liquid extraction was applied to extract THP, DOX, CTX, VCR, and the internal standard (IS, Pioglitazone) in plasma. Agilent Eclipse XDB-C18 (3.0 mm × 100 mm) was utilized and chromatographic separation was obtained in eight minutes. Mobile phases were composed of methanol and buffer (10 mM ammonium formate containing 0.1% formic acid). The method was linear within the concentration range of 1-500 ng/mL for THP, 2-1000 ng/mL for DOX, 2.5-1250 ng/mL for CTX, and 3-1500 ng/mL for VCR. The intra- and inter-day precisions of QC samples were found to be below 9.31 and 13.66%, and accuracy ranged from -0.2 to 9.07%, respectively. THP, DOX, CTX, VCR and the internal standard were stable in several conditions. Finally, this method was successfully utilized to simultaneously determine THP, DOX, CTX and VCR in human plasma of 15 patients with non-Hodgkin's Lymphoma after intravenous administration. Finally, the method was successfully employed in the clinical determination of THP, DOX, CTX, and VCR in patients with non-Hodgkin lymphoma after administration of RCHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) regimens.
Collapse
Affiliation(s)
- Peng Qi
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China; Ningxia Medical University School of Pharmacy, Ningxia, China.
| | - Ping Li
- Cancer Hospital, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Lijiao Qiao
- Cancer Hospital, General Hospital of Ningxia Medical University, Ningxia, China
| | - Huaqian Xue
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China; Ningxia Medical University School of Pharmacy, Ningxia, China
| | - Yanni Ma
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Shijie Wei
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiaoying Yang
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hao Zhang
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuxin Zhang
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yifan Wang
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China; Ningxia Medical University School of Pharmacy, Ningxia, China
| | - Shaolong He
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hongfeng Quan
- Ningxia Medical University School of Pharmacy, Ningxia, China
| | - Wenping Zhang
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
2
|
Rosser SPA, Atkinson C, Nath CE, Fletcher JI. Quantification of vincristine and tariquidar by LC-MS/MS in mouse whole blood using volumetric absorptive microsampling for pharmacokinetic applications. J Sep Sci 2022; 45:2508-2519. [PMID: 35567751 DOI: 10.1002/jssc.202101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022]
Abstract
A liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of vincristine and tariquidar in 10 μL of mouse whole blood using volumetric absorptive microsampling devices. Samples were extracted from the devices and quantified against calibrators prepared in a human blood plasma matrix. Separation of vincristine and tariquidar was achieved using a Shimpack XR ODS III C18 stationary phase and H2 O and methanol mobile phase solvents containing 0.1% formic acid, running a gradient elution at a flow rate 0.2 mL/min over 6.0 min. The method was linear up to 1200 ng/mL (R2 > 0.99 for both analytes), with calibrator accuracy within ± 15% of the nominal concentrations and analyte coefficient of variance < 15% for both vincristine and tariquidar. Pharmacokinetic assessment of both analytes was successfully applied in mice as both single agent therapy and combination therapy over a 24-hour period, and a 2.3-fold increase in vincristine drug exposure was observed in combination with tariquidar. This study validates the use of this approach for longitudinal analysis of drug exposure in animal studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Caroline Atkinson
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Christa E Nath
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|
7
|
Fabrizi G, Fioretti M, Mainero Rocca L. Dispersive solid-phase extraction procedure coupled to UPLC-ESI-MS/MS analysis for the simultaneous determination of thirteen cytotoxic drugs in human urine. Biomed Chromatogr 2016; 30:1297-308. [DOI: 10.1002/bmc.3684] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Giovanni Fabrizi
- Italian Workers’ Compensation Authority; Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory; Via Fontana Candida 1 00040 Monte Porzio Catone Rome Italy
| | - Marzia Fioretti
- Italian Workers’ Compensation Authority; Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory; Via Fontana Candida 1 00040 Monte Porzio Catone Rome Italy
| | - Lucia Mainero Rocca
- Italian Workers’ Compensation Authority; Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory; Via Fontana Candida 1 00040 Monte Porzio Catone Rome Italy
| |
Collapse
|
8
|
High Performance Liquid Chromatographic Assay for the Simultaneous Determination of Posaconazole and Vincristine in Rat Plasma. Int J Anal Chem 2015; 2015:743915. [PMID: 27034675 PMCID: PMC4807048 DOI: 10.1155/2015/743915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 12/27/2022] Open
Abstract
Purpose. Developing a validated HPLC-DAD method for simultaneous determination of posaconazole (PSZ) and vincristine (VCR) in rat plasma. Methods. PSZ, VCR, and itraconazole (ITZ) were extracted from 200 μL plasma using diethyl ether in the presence of 0.1 M sodium hydroxide solution. The organic layer was evaporated in vacuo and dried residue was reconstituted and injected through HC-C18 (4.6 × 250 mm, 5 μm) column. In the mobile phase, acetonitrile and 0.015 M potassium dihydrogen orthophosphate (30 : 70 to 80 : 20, linear gradient over 7 minutes) pumped at 1.5 mL/min. VCR and PSZ were measured at 220 and 262 nm, respectively. Two Sprague Dawley rats were orally dosed PSZ followed by iv dosing of VCR and serial blood sampling was performed. Results. VCR, PSZ, and ITZ were successfully separated within 11 min. Calibration curves were linear over the range of 50–5000 ng/mL for both drugs. The CV% and % error of the mean were ≤18% and limit of quantitation was 50 ng/mL for both drugs. Rat plasma concentrations of PSZ and VCR were simultaneously measured up to 72 h and their calculated pharmacokinetics parameters were comparable to the literature. Conclusion. The assay was validated as per ICH guidelines and is appropriate for pharmacokinetics drug-drug interaction studies.
Collapse
|
9
|
Baranowska I, Magiera S, Baranowski J. Clinical applications of fast liquid chromatography: a review on the analysis of cardiovascular drugs and their metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:54-79. [PMID: 23462623 DOI: 10.1016/j.jchromb.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 01/16/2023]
Abstract
One of the major challenges facing the medicine today is developing new therapies that enhance human health. To help address these challenges the utilization of analytical technologies and high-throughput automated platforms has been employed; in order to perform more experiments in a shorter time frame with increased data quality. In the last decade various analytical strategies have been established to enhance separation speed and efficiency in liquid chromatography applications. Liquid chromatography is an increasingly important tool for monitoring drugs and their metabolites. Furthermore, liquid chromatography has played an important role in pharmacokinetics and metabolism studies at these drug development stages since its introduction. This paper provides an overview of current trends in fast chromatography for the analysis of cardiovascular drugs and their metabolites in clinical applications. Current trends in fast liquid chromatographic separations involve monolith technologies, fused-core columns, high-temperature liquid chromatography (HTLC) and ultra-high performance liquid chromatography (UHPLC). The high specificity in combination with high sensitivity makes it an attractive complementary method to traditional methodology used for routine applications. The practical aspects of, recent developments in and the present status of fast chromatography for the analysis of biological fluids for therapeutic drug and metabolite monitoring, pharmacokinetic studies and bioequivalence studies are presented.
Collapse
Affiliation(s)
- Irena Baranowska
- Department of Analytical Chemistry, Silesian University of Technology, 7M. Strzody Str., 44-100 Gliwice, Poland.
| | | | | |
Collapse
|
10
|
Dubrovay Z, Háda V, Béni Z, Szántay C. NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities - part I. J Pharm Biomed Anal 2012; 84:293-308. [PMID: 22985529 DOI: 10.1016/j.jpba.2012.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed (1)H, (13)C, and (15)N NMR assignments as well as (1)H-(1)H, (1)H-(13)C and (1)H-(15)N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MS(n) fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level.
Collapse
Affiliation(s)
- Zsófia Dubrovay
- Chemical Works of Gedeon Richter Plc., API Research and Development - Spectroscopic Research, Budapest, Hungary
| | | | | | | |
Collapse
|
12
|
Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 2011; 32:5524-33. [DOI: 10.1016/j.biomaterials.2011.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/06/2011] [Indexed: 12/01/2022]
|