1
|
Hauser PC, Kubáň P. Contactless Conductivity Detection for Capillary Electrophoresis-Developments From 2020 to 2024. Electrophoresis 2024. [PMID: 39607304 DOI: 10.1002/elps.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The review covering the development of capillary electrophoresis with capacitively coupled contactless conductivity detection from 2020 to 2024 is the latest in a series going back to 2004. The article considers applications employing conventional capillaries and planar lab-on-chip devices as well as fundamental and technical developments of the detector and complete electrophoresis instrumentation.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Li L, Song YP, Ren DD, Li TX, Gao MH, Zhou L, Zeng ZC, Pu QA. A compact and high-performance setup of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C 4D). Analyst 2024; 149:3034-3040. [PMID: 38624147 DOI: 10.1039/d4an00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has the advantages of high throughput (simultaneous detection of multiple ions), high separation efficiency (higher than 105 theoretical plates) and rapid analysis capability (less than 5 min for common inorganic ions). A compact CE-C4D system is ideal for water quality control and on-site analysis. It is suitable not only for common cations (e.g. Na+, K+, Li+, NH4+, Ca2+, etc.) and anions (e.g. Cl-, SO42-, BrO3-, etc.) but also for some ions (e.g. lanthanide ions, Pb2+, Cd2+, etc.) that require complex derivatization procedures to be detected by ion chromatography (IC). However, an obvious limitation of the CE-C4D method is that its sensitivity (e.g. 0.3-1 μM for common inorganic ions) is often insufficient for trace analysis (e.g. 1 ppb or 20 nM level for common inorganic ions) without preconcentration. For this technology to become a powerful and routine analytical technique, the system should be made compact while maintaining trace analysis sensitivity. In this study, we developed an all-in-one version of the CE-C4D instrument with custom-made modular components to make it a convenient, compact and high-performance system. The system was designed using direct digital synthesis (DDS) technology to generate programmable sinusoidal waveforms with any frequency for excitation, a kilovolt high-voltage power supply for capillary electrophoresis separation, and an "effective" differential C4D cell with a low-noise circuitry for high-sensitivity detection. We characterized the system with different concentrations of Cs+, and even a low concentration of 20 nM was detectable without preconcentration. Moreover, the optimized CE-C4D setup was applied to analyse mixed ions at a trace concentration of 200 nM with excellent signal-to-noise ratios. In typical applications, the limits of detection based on the 3σ criterion (without baseline filtering) were 9, 10, 24, 5, and 12 nM for K+, Cs+, Li+, Ca2+, and Mg2+, respectively, and about 7, 6, 6 and 6 nM for Br-, ClO4-, BrO3- and SO42-, respectively. Finally, the setup was also applied for the analysis of all 14 lanthanide ions and rare-earth minerals, and it showed an improvement in sensitivity by more than 25 times.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Yun-Peng Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Dou-Dou Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Tang-Xiu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Ming-Hui Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Zhi-Cong Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Qi-Aosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| |
Collapse
|
3
|
Elbashir AA, Osman A, Elawad M, Ziyada AK, Aboul-Enein HY. Application of capillary electrophoresis with capacitively contactless conductivity detection for biomedical analysis. Electrophoresis 2024; 45:400-410. [PMID: 38100198 DOI: 10.1002/elps.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 03/20/2024]
Abstract
The coupling of capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4 D) has become convenient analytical method for determination of small molecules that do not possess chromogenic or fluorogenic group. The implementations of CE with C4 D in the determination of inorganic and organic ions and amino acids in biomedical field are demonstrated. Attention on background electrolyte composition, sample treatment procedures, and the utilize of multi-detection systems are described. A number of tables summarizing highly developed CE-C4 D methods and the figures of merit attained are involved. Lastly, concluding remarks and perspectives are argued.
Collapse
Affiliation(s)
- Abdalla A Elbashir
- Department, of Chemistry, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdelbagi Osman
- Department of Chemical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mohammed Elawad
- Department of Chemistry, Faculty of Science, Omdurman Islamic University, Omdurman, Sudan
| | - Abobakr K Ziyada
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Division of Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Do YN, Kieu TLP, Dang THM, Nguyen QH, Dang TH, Tran CS, Vu AP, Do TT, Nguyen TN, Dinh SL, Nguyen TMT, Pham TNM, Hoang AQ, Pham B, Nguyen TAH. Green Analytical Method for Simultaneous Determination of Glucosamine and Calcium in Dietary Supplements by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:2765508. [PMID: 36760655 PMCID: PMC9904918 DOI: 10.1155/2023/2765508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
The need for analytical methods that are fast, affordable, and ecologically friendly is expanding. Because of its low solvent consumption, minimal waste production, and speedy analysis, capillary electrophoresis is considered a "green" choice among analytical separation methods. With these "green" features, we have utilized the capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C4D) to simultaneously determine glucosamine and Ca2+ in dietary supplements. The CE analysis was performed in fused silica capillaries (50 μm inner diameter, 40 cm total length, 30 cm effective length), and the analytical time was around 5 min. After optimization, the CE conditions for selective determination of glucosamine and Ca2+ were obtained, including a 10 mM tris (hydroxymethyl) aminomethane/acetic acid (Tris/Ace) buffer of pH 5.0 as the background electrolyte; separation voltage of 20 kV; and hydrodynamic injection (siphoning) at 25 cm height for 30 s. The method illustrated good linearity over the concentration range of 5.00 to 200 mg/L of for glucosamine (R 2 = 0.9994) and 1.00 to 100 mg/L for Ca2+ (R 2 = 0.9994). Under the optimum conditions, the detection limit of glucosamine was 1.00 mg/L, while that of Ca2+ was 0.05 mg/L. The validated method successfully analyzed glucosamine and Ca2+ in seven dietary supplement samples. The measured concentrations were generally in line with the values of label claims and with cross-checking data from reference methods (HPLC and ICP-OES).
Collapse
Affiliation(s)
- Yen Nhi Do
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Lan Phuong Kieu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Thi Huyen My Dang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy, Thai Nguyen University, 284 Luong Ngoc Quyen, Thai Nguyen 24000, Vietnam
| | - Thu Hien Dang
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Cao Son Tran
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Anh Phuong Vu
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Trang Do
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Ngan Nguyen
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Son Luong Dinh
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Minh Thu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Bach Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| |
Collapse
|