1
|
Xiang YC, Peng P, Liu XW, Jin X, Shen J, Zhang T, Zhang L, Wan F, Ren YL, Yu QQ, Zhao HZ, Si Y, Liu Y. Paris saponin VII, a Hippo pathway activator, induces autophagy and exhibits therapeutic potential against human breast cancer cells. Acta Pharmacol Sin 2022; 43:1568-1580. [PMID: 34522004 PMCID: PMC9159991 DOI: 10.1038/s41401-021-00755-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of the Hippo signaling pathway seen in many types of cancer is usually associated with a poor prognosis. Paris saponin VII (PSVII) is a steroid saponin isolated from traditional Chinese herbs with therapeutic action against various human cancers. In this study we investigated the effects of PSVII on human breast cancer (BC) cells and its anticancer mechanisms. We showed that PSVII concentration-dependently inhibited the proliferation of MDA-MB-231, MDA-MB-436 and MCF-7 BC cell lines with IC50 values of 3.16, 3.45, and 2.86 μM, respectively, and suppressed their colony formation. PSVII (1.2-1.8 μM) induced caspase-dependent apoptosis in the BC cell lines. PSVII treatment also induced autophagy and promoted autophagic flux in the BC cell lines. PSVII treatment decreased the expression and nuclear translocation of Yes-associated protein (YAP), a downstream transcriptional effector in the Hippo signaling pathway; overexpression of YAP markedly attenuated PSVII-induced autophagy. PSVII-induced, YAP-mediated autophagy was associated with increased active form of LATS1, an upstream effector of YAP. The activation of LATS1 was involved the participation of multiple proteins (including MST2, MOB1, and LATS1 itself) in an MST2-dependent sequential activation cascade. We further revealed that PSVII promoted the binding of LATS1 with MST2 and MOB1, and activated LATS1 in the BC cell lines. Molecular docking showed that PSVII directly bound to the MST2-MOB1-LATS1 ternary complex. Microscale thermophoresis analysis and drug affinity responsive targeting stability assay confirmed the high affinity between PSVII and the MST2-MOB1-LATS1 ternary complex. In mice bearing MDA-MB-231 cell xenograft, administration of PSVII (1.5 mg/kg, ip, 4 times/week, for 4 weeks) significantly suppressed the tumor growth with increased pLATS1, LC3-II and Beclin 1 levels and decreased YAP, p62 and Ki67 levels in the tumor tissue. Overall, this study demonstrates that PSVII is a novel and direct Hippo activator that has great potential in the treatment of BC.
Collapse
Affiliation(s)
- Yu-chen Xiang
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Peng Peng
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Xue-wen Liu
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Xin Jin
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Jie Shen
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Te Zhang
- grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Liang Zhang
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Fang Wan
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Yu-liang Ren
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Qing-qing Yu
- grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Hu-zi Zhao
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Yuan Si
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Ying Liu
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| |
Collapse
|
2
|
Mukherjee AK, Chattopadhyay DJ. Potential clinical applications of phytopharmaceuticals for the in-patient management of coagulopathies in COVID-19. Phytother Res 2022; 36:1884-1913. [PMID: 35147268 PMCID: PMC9111032 DOI: 10.1002/ptr.7408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Thrombotic complications occur in many cardiovascular pathologies and have been demonstrated in COVID‐19. The currently used antithrombotic drugs are not free of adverse reactions, and COVID‐19 patients in particular, when treated with a therapeutic dose of an anticoagulant do not receive mortality benefits. The clinical management of COVID‐19 is one of the most difficult tasks for clinicians, and the search for safe, potent, and effective antithrombotic drugs may benefit from exploring naturally bioactive molecules from plant sources. This review describes recent advances in understanding the antithrombotic potential of herbal drug prototypes and points to their future clinical use as potent antithrombotic drugs. Although natural products are perceived to be safe, their clinical and therapeutic applications are not always apparent or accepted. More in‐depth studies are necessary to demonstrate the clinical usefulness of plant‐derived, bioactive compounds. In addition, holistic approaches in systematic investigations and the identification of antithrombotic mechanisms of the herbal bioactive molecule(s) need to be conducted in pre‐clinical studies. Moreover, rigorous studies are needed to compare the potency of herbal drugs to that of competitor chemical antithrombotic drugs, and to examine their interactions with Western antithrombotic medicines. We have also proposed a road map to improve the commercialization of phytopharmaceuticals.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, India
| | | |
Collapse
|
3
|
Lu W, Pan M, Zhang P, Zheng T, Huang L, Ye F, Lei P. The Pharmacokinetics and Tissue Distributions of Nine Steroidal Saponins from Paris polyphylla in Rats. Eur J Drug Metab Pharmacokinet 2021; 45:665-673. [PMID: 32661907 DOI: 10.1007/s13318-020-00633-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Paris polyphylla (P. polyphylla) is a herb widely used in traditional Chinese medicine to treat various diseases. This study used ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to study the pharmacokinetics and tissue distributions of nine steroidal saponins from P. polyphylla. METHODS P. polyphylla extract was administered to rats intravenously (i.v.) and orally (p.o.). The concentrations of the nine main bioactive components of the extract were determined in plasma and tissue samples using UPLC-MS/MS. The nine saponin compounds were also incubated in an anaerobic environment with intestinal flora suspension solution to investigate hydrolysis by intestinal flora. RESULTS After oral administration of the P. polyphylla extract, polyphyllin VII was found to have the highest maximum concentration (Cmax, 17.0 ± 2.24 µg/L) of all nine components, followed by the Cmax values of dioscin (16.17 ± 0.64 µg/L) and polyphyllin H (11.75 ± 1.28 µg/L), while the Cmax values of polyphyllin I, polyphyllin II, progenin III, polyphyllin IV, gracillin, and polyphyllin were less than 10 µg/L. The bioavailabilities of all nine components were less than 1%. All the compounds were hydrolyzed by intestinal flora and were predominantly distributed in the liver and lungs. CONCLUSIONS The nine compounds presented different pharmacokinetic parameter values, and multiple administrations did not accumulate in the body. The bioavailabilities of the compounds were low, partly because of hydrolysis by intestinal flora. The nine compounds were mainly distributed in the liver and lungs, which may be target organs.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.,College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Meng Pan
- Department of Cardiovascular Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Penghua Zhang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Tao Zheng
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Liangyong Huang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Fang Ye
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Pan Lei
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, China. .,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
5
|
Yuan W, Wang J, An X, Dai M, Jiang Z, Zhang L, Yu S, Huang X. UPLC-MS/MS Method for the Determination of Hyperoside and Application to Pharmacokinetics Study in Rat After Different Administration Routes. Chromatographia 2021; 84:249-256. [PMID: 33487663 PMCID: PMC7810192 DOI: 10.1007/s10337-020-04002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
A rapid and sensitive UPLC-MS/MS method was developed and fully validated for the quantification of hyperoside in rat plasma after intragastric, intraperitoneal and intravenous administration. Geniposide was used as an internal standard, and simple liquid–liquid extraction by ethyl acetate was utilized for to extracting the analytes from the rat plasma samples. Chromatographic separation was carried out on an InfinityLab Poroshell 120EC-C18column (2.1 mm × 50 mm, 1.9-Micro, Agilent technologies, USA). The mobile phase consisted of methanol (A) and water (B) (containing 0.1% acetic acid) at a flow rate of 0.4 mL/min. A run time of 3 min for each sample made it possible to analyze more than 300 plasma samples per day. The validated linear ranges of hyperoside were 2–1000 ng/mL in rat plasma. The intra-day and inter-day precision were within 2.6–9.3%, and accuracy were ± 8.6%. And the results of recovery and matrix interference studies were well within the accepted variability limits. Finally, this method was fully validated and successfully applied to the pharmacokinetic studies of hyperoside via different administration routes in rats.
Collapse
Affiliation(s)
- Wenjing Yuan
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jingjing Wang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210009 People's Republic of China
| | - Mingxin Dai
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Zhenzhou Jiang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Luyong Zhang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 People's Republic of China
| | - Sen Yu
- Mosim Co., Ltd, Nanjing, 210009 People's Republic of China
| | - Xin Huang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| |
Collapse
|
6
|
Stylos E, Chatziathanasiadou MV, Syriopoulou A, Tzakos AG. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) based bioavailability determination of the major classes of phytochemicals. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047:15-38. [DOI: 10.1016/j.jchromb.2016.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/06/2016] [Accepted: 12/18/2016] [Indexed: 12/15/2022]
|
7
|
Zhang J, Zhao F, Yu X, Lu X, Zheng G. Pharmacokinetics of eupalinolide A, eupalinolide B and hyperoside from Eupatorium lindleyanum in rats by LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 995-996:1-7. [DOI: 10.1016/j.jchromb.2015.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/20/2015] [Accepted: 04/26/2015] [Indexed: 02/08/2023]
|
8
|
Effect of Puerarin on the Pharmacokinetics of Baicalin in Gegen Qinlian Decoction (葛根芩连汤) in Mice. Chin J Integr Med 2015; 24:525-530. [DOI: 10.1007/s11655-015-1973-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 11/30/2022]
|
9
|
Oh JH, Lee YJ. Sample preparation for liquid chromatographic analysis of phytochemicals in biological fluids. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:314-330. [PMID: 24375623 DOI: 10.1002/pca.2484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Natural products have been used traditionally for the treatment and prevention of diseases for thousands of years and are nowadays consumed as dietary supplements and herbal medicine. To ensure the safe and effective use of these herbal products, information about bioavailability of active compounds in plasma or target tissues should be provided via validated analytical methods combined with appropriate sampling methods. OBJECTIVE To provide comprehensive and abridged information about sample preparation methods for the quantification of phytochemicals in biological samples using liquid chromatography analysis. METHODS Sample pre-treatment procedures used in analytical methods for in vivo pharmacokinetic studies of natural compounds or herbal medicines were reviewed. These were categorised according to the biological matrices (plasma, bile, urine, faeces and tissues) and sample clean-up processes (protein precipitation, liquid-liquid extraction and solid-phase extraction). RESULTS Although various kinds of sample pre-treatment methods have been developed, liquid-liquid extraction is still widely used and solid-phase extraction is becoming increasingly popular because of its efficiency for extensive clean up of complex matrix samples. However, protein precipitation is still favoured due to its simplicity. CONCLUSION Sample treatment for phytochemical analysis in biological fluids is an indispensable and critical step to obtain high quality results. This step could dominate the overall analytical process because both the duration of the process as well as the reliability of the data depend in large part on its efficiency. Thus, special attention should be given to the choice of a proper sample treatment method that targets analytes and their biomatrix.
Collapse
Affiliation(s)
- Ju-Hee Oh
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | | |
Collapse
|
10
|
Zhou D, Jin Y, Yao F, Duan Z, Wang Q, Liu J. Validated LC-MS/MS method for the simultaneous determination of hyperoside and 2′′-O-galloylhyperin in rat plasma: application to a pharmacokinetic study in rats. Biomed Chromatogr 2013; 28:1057-63. [PMID: 24375731 DOI: 10.1002/bmc.3117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/03/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Donghui Zhou
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| | - Yuanzhe Jin
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| | - Fengchen Yao
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| | - Zhiying Duan
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| | - Qi Wang
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| | - Jing Liu
- Department of Cardiology; The Fourth Affiliated Hospital of China Medical University; Shenyang 110032 Liaoning China
| |
Collapse
|
11
|
Song M, Hong M, Lee MY, Jee JG, Lee YM, Bae JS, Jeong TC, Lee S. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6. Food Chem Toxicol 2013; 59:549-53. [DOI: 10.1016/j.fct.2013.06.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|