1
|
Guo Z, Tang S, Nie K, Liu J, Hu C. Studies on absorption mechanism and pharmacokinetic properties of albendazole-bile acid conjugate: In vivo and in vitro. Biomed Pharmacother 2024; 179:117400. [PMID: 39243427 DOI: 10.1016/j.biopha.2024.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
PURPOSE To improve the oral bioavailability of albendazole (ABZ), a series of albendazole-bile acid conjugates (ABCs) were synthesized. ABC's transmembrane transport mechanism and in vivo pharmacokinetic properties were preliminarily studied. METHODS The transmembrane transport mechanism of ABCs was studied using the Caco-2 monolayer cell model and intestinal perfusion model. The concentration of ABCs and ABZ were evaluated using High-Performance Liquid Chromatography (HPLC) and HPLC-Mass Spectrometry (HPLC-MS/MS). RESULTS Compared to ABZ, better permeability was observed for different types and concentrations of ABCs using the Caco-2 monolayer cell model, with ABC-C8 showing the highest permeability. The transmembrane transport of ABCs was affected by ASBT inhibitors, indicating an ASBT-mediated active transport mechanism. Additionally, introducing cholic acid resulted in ABZ no longer being a substrate for P-gp, MRP2, and BCRP, effectively reversing ABZ efflux. In vivo unidirectional intestinal perfusion results in rats showed that ABCs altered the absorption site of ABZ from the jejunum to the ileum. The absorption efficiency of ABCs in each intestinal segment was higher than that of ABZ, and the transmembrane transport efficiency decreased with increasing concentrations of ASBT inhibitors. This further confirmed the presence of both passive diffusion and ASBT-mediated active transport mechanisms in the transport of ABCs. The solubility of ABCs in gastric juice and pharmacokinetics in rats showed that ABZ-C4 exhibited enhanced solubility. Moreover, ABCs significantly increased oral bioavailability compared to ABZ, with ABC-C4 showing an approximately 31-fold increase in bioavailability. CONCLUSION The transmembrane transport mechanism of ABCs involves a combination of ASBT-mediated active transport and passive diffusion. Moreover, the incorporation of BAs successfully reverses the efflux of ABZ by efflux proteins. Among the synthesized conjugates, ABC-C4 demonstrated superior dissolution behavior both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhimei Guo
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810001, PR China; Medical College, Qinghai University, Xining, Qinghai 810001, PR China
| | - Shizhen Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810001, PR China; Medical College, Qinghai University, Xining, Qinghai 810001, PR China
| | - Kaili Nie
- College of Life Science and Technology, Beijing University of Chemical of Technology, Beijing 100086, PR China
| | - Jingshuai Liu
- College of Life Science and Technology, Beijing University of Chemical of Technology, Beijing 100086, PR China
| | - Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810001, PR China.
| |
Collapse
|
2
|
Effects of D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles on the absorption, pharmacokinetics, and pharmacodynamics of salinomycin sodium. Anticancer Drugs 2020; 30:72-80. [PMID: 30239423 DOI: 10.1097/cad.0000000000000695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although salinomycin sodium (SS) has shown in-vitro potential to inhibit cancer stem cell growth and development, its low water solubility makes it a poor candidate as an oral chemotherapeutic agent. To improve the bioavailability of SS, SS was encapsulated here using D-α-tocopherol polyethylene glycol succinate (TPGS)-emulsified poly(lactic-co-glycolic acid) (PLGA) nanoparticles and compared with its parent SS in terms of absorption, pharmacokinetics, and efficacy in suppressing nasopharyngeal carcinomas stem cells. The pharmacokinetics of SS and salinomycin sodium-loaded D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles (SLN) prepared by nanoprecipitation were analyzed in-vivo by timed-interval blood sampling and oral administration of SS and SLN to rats. Sensitive liquid chromatography-mass spectrometry (LC-MS) was developed to quantify plasma drug concentrations. SS and SLN transport in Caco-2 cells was also investigated. The therapeutic efficacy of SS and SLN against cancer stem cells was determined by orally administering the drugs to mice bearing CNE1 and CNE2 nasopharyngeal carcinoma xenografts and then evaluating CD133 cell proportions and tumorsphere formation. The in-vivo trial with rats showed that the Cmax, AUC(0-t), and Tmax for orally administered SLN were all significantly higher than those for SS (P<0.05). These findings were corroborated by a Caco-2 cell Transwell assay showing that relative SLN absorption was greater than that of SS on the basis of their apparent permeability coefficients (Papp). Significantly, therapeutic SLN efficacy against nasopharyngeal carcinoma stem cells was superior to that of SS. TPGS-emulsified PLGA nanoparticles effectively increase SS solubility and bioavailability. SLN is, therefore, promising as an oral chemotherapeutic agent against cancer stem cells.
Collapse
|
3
|
Kong J, Wu K, Ji Y, Chen K, Zhang J, Sun H, Liang Y, Liang W, Chang Y, Cheng J, Tong J, Li J, Xing G, Chen G. Enhanced Bioavailability by Orally Administered Sirolimus Nanocrystals. ACS APPLIED BIO MATERIALS 2019; 2:4612-4621. [DOI: 10.1021/acsabm.9b00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jianglong Kong
- College of Food Science, ShiHezi University, ShiHezi 832000, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Kai Wu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Ji
- The University of California’s Center for Environmental Implications of Nanotechnology, Los Angeles, California 90095, United States
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hui Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yuelan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Wei Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yanan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jenny Cheng
- The University of California’s Center for Environmental Implications of Nanotechnology, Los Angeles, California 90095, United States
| | - Junmao Tong
- College of Food Science, ShiHezi University, ShiHezi 832000, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Guogang Chen
- College of Food Science, ShiHezi University, ShiHezi 832000, China
| |
Collapse
|
4
|
Lv Q, He Q, Wu Y, Chen X, Ning Y, Chen Y. Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model. Biol Trace Elem Res 2019; 190:336-348. [PMID: 30357757 DOI: 10.1007/s12011-018-1554-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
Investigating the bioaccessibility and bioavailability of Cd based on real contaminated cooked rice matrixes helps establish an accurate risk assessment method and effectively reduce the digestion and absorption of Cd. An 11-day in vitro rapid Caco-2/HT-29 co-culture cell model was used to establish and evaluate the simulation of the absorption and transport of Cd in the small intestine with a 70:30 Caco-2/HT-29 co-culture ratio and 1.0 mmol L-1 butyric acid as a differentiation inducer. The bioaccessibility and bioavailability of Cd in cooked rice were studied using the cell model combined with an in vitro digestion model. The bioaccessibility of Cd of each of the three cooked rice samples was significantly higher in the gastric phase (59.04-80.23%) than in the gastrointestinal phase (37.14-52.93%). Despite the extension of the digestion time of the gastrointestinal phase, no significant difference was found among the time points. Results demonstrated that the amount of undigested residue, not the level of Cd contamination, significantly contributed to the bioaccessibility of Cd, which was affected by pH or ion. The absorption rate of Cd (25.08% ± 3.05%) was greater than the values obtained using the pure Caco-2 cell models. The bioavailability of Cd (8.29% ± 1.95%) was almost similar to that of Zn2+ (6.66% ± 1.41%) in the cooked rice matrix, indicating that the intestinal epithelium expressed a strong absorptive capacity of Cd during the absorption of essential metallic elements. The 11-day rapid Caco-2/HT-29 co-culture cell model combined with the in vitro digestion model was an efficient tool for studying the bioaccessibility and bioavailability of Cd or other substances in a food matrix to further investigate mechanistic steps and screen a broad set of food matrix factors.
Collapse
Affiliation(s)
- Qian Lv
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Qiang He
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yue Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China.
| | - Xi Chen
- Academy of State Administration of Grain, No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| | - Yali Ning
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yan Chen
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Li C, Zhang J, Zhang F. In vitro inhibitory effects of sophocarpine on human liver cytochrome P450 enzymes. Xenobiotica 2019; 49:1127-1132. [PMID: 29676195 DOI: 10.1080/00498254.2018.1468047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
1. Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. 2. In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs). 3. The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19 μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54 μM-1 min-1. 4. The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.
Collapse
Affiliation(s)
- Jingwei Zhang
- a Department of General Surgery , Shanxian Central Hospital , Heze , Shandong , China
| | - Chuansheng Li
- a Department of General Surgery , Shanxian Central Hospital , Heze , Shandong , China
| | - Jingfa Zhang
- b Department of Pharmacy , Shanxian Central Hospital , Heze , Shandong , China
| | - Fan Zhang
- a Department of General Surgery , Shanxian Central Hospital , Heze , Shandong , China
| |
Collapse
|
6
|
Pharmacokinetic Profile of Kaurenoic Acid after Oral Administration of Araliae Continentalis Radix Extract Powder to Humans. Pharmaceutics 2018; 10:pharmaceutics10040253. [PMID: 30513750 PMCID: PMC6321364 DOI: 10.3390/pharmaceutics10040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to characterize pharmacokinetics (PKs) of kaurenoic acid (KAU) after administration of the clinical usual dose of Araliae Continentalis Radix extract powder to Korean subjects for the first time and evaluate the mechanism of its absorption in vitro. A simple, sensitive, and selective analytical method was developed for the detection of KAU in human plasma. Concentrations of KAU were quantified by ultra-performance liquid chromatography tandem mass spectrometry after simple liquid–liquid extraction. This pharmacokinetic model of KAU was best described by a two-compartment model with first-order absorption. To identify efflux transporters involved in the absorption of KAU, a Caco-2 monolayer model was used. Estimated PK parameters were: systemic clearance, 23.89 L/h; inter-compartmental clearance, 15.55 L/h; rate constant for absorption, 1.72 h−1; volume of distribution of the central compartment, 24.44 L; and volume of distribution of the peripheral compartment, 64.05 L. Results from Caco-2 bidirectional transport study suggested that KAU was a potential substrate of efflux transporters. In summary, PKs of KAU were successfully characterized after administration of a usual dose of Araliae continentalis Radix extract powder in human with the newly developed bioanalytical method and the mechanism of absorption of KAU was identified clearly.
Collapse
|
7
|
Sun S, Chen Q, Ge J, Liu X, Wang X, Zhan Q, Zhang H, Zhang G. Pharmacokinetic interaction of aconitine, liquiritin and 6-gingerol in a traditional Chinese herbal formula, Sini Decoction. Xenobiotica 2017; 48:45-52. [PMID: 28051355 DOI: 10.1080/00498254.2017.1278807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sen Sun
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qingshan Chen
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jiyun Ge
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiang Liu
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xinxia Wang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qi Zhan
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Ma YH, Wei MY, Liu YY, Song FR, Liu ZY, Pi ZF. Study on intestinal transport of Veratrum alkaloids compatible with Panax ginseng across the Caco-2 cell monolayer model by UPLC-ESI-MS method. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhang H, Sun S, Zhang W, Xie X, Zhu Z, Chai Y, Zhang G. Biological activities and pharmacokinetics of aconitine, benzoylaconine, and aconine after oral administration in rats. Drug Test Anal 2015; 8:839-46. [PMID: 26360128 DOI: 10.1002/dta.1858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/11/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Hai Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai 200438 China
- Department of Pharmaceutical Analysis; Second Military Medical University School of Pharmacy; Shanghai 200433 China
| | - Sen Sun
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai 200438 China
| | - Wen Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai 200438 China
| | - Xiangqun Xie
- Department of Pharmaceutical Sciences; University of Pittsburgh School of Pharmacy; Pittsburgh PA 15260 USA
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis; Second Military Medical University School of Pharmacy; Shanghai 200433 China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis; Second Military Medical University School of Pharmacy; Shanghai 200433 China
| | - Guoqing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai 200438 China
| |
Collapse
|
10
|
Gong X, Chen Y, Wu Y. Absorption and Metabolism Characteristics of Triptolide as Determined by a Sensitive and Reliable LC-MS/MS Method. Molecules 2015; 20:8928-40. [PMID: 25993421 PMCID: PMC6272403 DOI: 10.3390/molecules20058928] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022] Open
Abstract
In this research, a sensitive and reliable LC-MS/MS method was developed and applied to determine the concentration of triptolide in rat plasma, microsomes, and cell incubation media. The absolute oral bioavailability of triptolide is 63.9% at a dose of 1 mg·kg−1. In vitro, the bidirectional transport of triptolide across Caco-2 cells was studied. A markedly higher transport of triptolide across Caco-2 cells was observed in the basolateral-to-apical direction and was abrogated in the presence of the P-gp inhibitor, verapamil. The result indicated that P-gp might be involved in the absorption of triptolide in intestinal. The metabolic stability was also investigated using human liver microsome incubation systems in vitro. In HLMs, incubations with an initial triptolide concentration of 1 μM resulted in an 82.4% loss of substrate over 60 min, and the t1/2 was 38 min, which indicated that triptolide was easily metabolized in human liver microsomes. In conclusion, the absolute oral bioavailability of triptolide in plasma, transport across Caco-2 cell monolayers, and metabolic stability in human liver microsomes were systematically investigated by using a sensitive and reliable LC-MS/MS method.
Collapse
Affiliation(s)
- Xiaomei Gong
- Department of Radiatin Oncology, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai 200433, China.
| | - Yan Chen
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing 210095, Jiangsu, China.
| |
Collapse
|