1
|
Wong ALA, Xiang X, Ong PS, Mitchell EQY, Syn N, Wee I, Kumar AP, Yong WP, Sethi G, Goh BC, Ho PCL, Wang L. A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs. Pharmaceutics 2018; 10:pharmaceutics10040221. [PMID: 30413076 PMCID: PMC6321130 DOI: 10.3390/pharmaceutics10040221] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the last decade, the tremendous improvement in the sensitivity and also affordability of liquid chromatography-tandem mass spectrometry (LC-MS/MS) has revolutionized its application in pharmaceutical analysis, resulting in widespread employment of LC-MS/MS in determining pharmaceutical compounds, including anticancer drugs in pharmaceutical research and also industries. Currently, LC-MS/MS has been widely used to quantify small molecule oncology drugs in various biological matrices to support preclinical and clinical pharmacokinetic studies in R&D of oncology drugs. This mini-review article will describe the state-of-the-art LC-MS/MS and its application in rapid quantification of small molecule anticancer drugs. In addition, efforts have also been made in this review to address several key aspects in the development of rapid LC-MS/MS methods, including sample preparation, chromatographic separation, and matrix effect evaluation.
Collapse
Affiliation(s)
- Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Pei Shi Ong
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Ee Qin Ying Mitchell
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Nicholas Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Ian Wee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| |
Collapse
|
3
|
The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J Pharm Sci 2016; 12:285-291. [PMID: 32104340 PMCID: PMC7032215 DOI: 10.1016/j.ajps.2016.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
A biodegradable poly(lactic-co-glycolic acid) loading atorvastatin calcium (AC) nanoparticles (AC-PLGA-NPs) were prepared by probe ultrasonication and evaporation method aiming at improving the oral bioavailability of AC. The effects of experimental parameters, including stabilizer species, stabilizer concentration and pH of aqueous phase, on particle size were also evaluated. The resultant nanoparticles were in spherical shape with an average diameter of 174.7 nm and a narrow particle size distribution. And the drug loading and encapsulation efficiency were about 8% and 71%, respectively. The particle size and polydispersion were almost unchanged in 10 days. The release curves of AC-PLGA-NPs in vitro displaying sustained release characteristics indicated that its release mechanisms were matrix erosion and diffusion. The pharmacokinetic study in vivo revealed that the Cmax and AUC0-∞ of AC-PLGA-NPs in rats were nearly 3.7-fold and 4.7-fold higher than that of pure atorvastatin calcium suspension. Our results demonstrated that the delivery of AC-PLGA-NPs could be a promising approach for the oral delivery of AC for enhanced bioavailability.
Collapse
|