1
|
Shang Z, Liu C, Qiao X, Ye M. Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): An update review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115686. [PMID: 36067839 DOI: 10.1016/j.jep.2022.115686] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, called Gan-Cao in China, is one of the most popular traditional herbal medicines. It is derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. Licorice is recorded in the pharmacopoeias of China, Japan, US, and Europe. AIM This review updates research progress of licorice from the perspectives of chemical analysis, quality evaluation, drug metabolism, and pharmacokinetic studies from 2009 to April 2022. MATERIALS AND METHODS Both English and Chinese literatures were collected from databases including PubMed, Elsevier, Web of Science, and CNKI (Chinese). Licorice, extraction, structural characterization/identification, quality control, metabolism, and pharmacokinetics were used as keywords. RESULTS Newly developed analytical methods, including LC/UV, 2DLC, LC/MS, GC/MS, and mass spectrometry imaging (MSI) for chemical analysis of licorice were summarized. CONCLUSION This review provides a comprehensive summary on chemical analysis of licorice.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
2
|
Wu J, Zhong QQ, Wang TY, Wang CX, Du Y, Ji S, Wang L, Guo MZ, Tang DQ. MS-based metabolite analysis of two licorice chalcones in mice plasma, bile, feces, and urine after oral administration. Biomed Chromatogr 2020; 35:e4998. [PMID: 33037660 DOI: 10.1002/bmc.4998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Isoliquiritigenin (ILG) and isoliquiritin (ILQ), two kinds of major flavonoids in licorice, are biological active substances with antioxidant, anti-inflammatory, and tumor-suppressive effects. However, their in vivo metabolites, possible material basis of this two licorice chalcones for the treatment of diseases, have not been studied completely. To determine the metabolism of ILG and ILQ, after oral administration of 100 mg/kg/day of these compounds for consecutive 8 days, the metabolites of these two licorice chalcones in mice plasma, urine, feces, and bile were determined using liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry in this study. The structures of those metabolites were tentatively identified according to their fragment pathways, accurate masses, characteristic product ions, metabolism law, and reference standards-matching. As a result, a total of 25 and 29 metabolites of ILG and ILQ were identified, respectively. Seven main metabolic pathways, oxidation and reduction, deglycosylation and glycosylation, dehydroxylation and hydroxylation, demethoxylation and methoxylation, acetylation, glucuronidation, and sulfation, were summarized to tentatively explain how the metabolites were biologically transformed. These results provide the important information on the metabolism of ILG and ILQ, which may be helpful for the further research of their pharmacological mechanism.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmaceutical Analysis, Jiangsu College of Nursing, Huai'an, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tian-Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chen-Xiang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
4
|
An UHPLC-MS/MS method for simultaneous determination of quercetin 3- O -rutinoside, kaempferol 3- O -rutinoside, isorhamnetin 3- O -rutinoside, bilobalide and ligustrazine in rat plasma, and its application to pharmacokinetic study of Xingxiong injection. Chin J Nat Med 2017; 15:710-720. [DOI: 10.1016/s1875-5364(17)30101-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/22/2022]
|