1
|
Boguś MI, Kazek M. Sex- and Metamorphosis-Related Changes in the Cuticular Lipid Profile of Galleria mellonella Pupae and Adults. INSECTS 2024; 15:965. [PMID: 39769567 PMCID: PMC11678884 DOI: 10.3390/insects15120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The majority of insects reproduce sexually. Among the many factors involved in controlling the reproductive process, cuticular lipids play an important role as unique chemical signatures of species, developmental stage, and sex, and participate in mate recognition. An understanding of the sex- and metamorphosis-related fluctuations in the cuticular lipid profiles of harmful insects is necessary to hamper their reproductive process. A GC/MS analysis of the cuticular lipids of the beehive pest Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) revealed 11 FFAs in the male pupae (C8:0, C9:0, C14:0, C15:0, C16:1, C16:0, C17:0, C18:1, C18:0, C20:1, and C21:1) together with another two in the females (C10:0 and C17:1). As metamorphosis progressed, some FFAs disappeared from the pupal cuticle (C8:0 and C17:0 in both sexes, and C10:0, C17:1, and C20:1 only in female pupae) and the levels of the others changed. In adult virgin males and females, C8:0, C17:1, and C17:0 reappeared and two FFAs absent in pupae (C6:0 and C11:0) appeared. In virgin males, C13:0 also appeared (absent in pupae). Copulation resulted in the disappearance of C13:0 and C17:1, decreased the concentrations of C9:0, C11:0, C18:1, and C18:0, and elevated the amounts of C14:0, C16:1, and C16:0 in mated males. In mated females, the concentrations of C11:0, C14:0, C15:0, C16:0, C17:1, and C18:1 increased while C18:1 decreased. Copulation reduced cholesterol levels in mated females, and increased those in males.
Collapse
Affiliation(s)
- Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
- Biomibo, 15 Strzygłowska St., 04-872 Warsaw, Poland
| | - Michalina Kazek
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 19 Poleczki St., 02-822 Warsaw, Poland;
| |
Collapse
|
2
|
Wojciechowska M, Stepnowski P, Gołębiowski M. The impact of insecticides containing deltamethrin and cyfluthrin on the composition of surface compounds in the larvae, females and males of
Tenebrio molitor. Biomed Chromatogr 2022; 36:e5346. [DOI: 10.1002/bmc.5346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Wojciechowska
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry University of Gdańsk Gdańsk Poland
| | - Piotr Stepnowski
- Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of Chemistry University of Gdańsk Gdańsk Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry University of Gdańsk Gdańsk Poland
| |
Collapse
|
3
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
4
|
Gołębiowski M, Bojke A, Tkaczuk C. Effects of the entomopathogenic fungi Metarhizium robertsii, Metarhizium flavoviride, and Isaria fumosorosea on the lipid composition of Galleria mellonella larvae. Mycologia 2021; 113:525-535. [PMID: 33783340 DOI: 10.1080/00275514.2021.1877520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Galleria mellonella is a pest of the honey bee (Apis mellifera L.) and causes significant losses to the beekeeping industry; therefore, experiments are needed to decode the effects of entomopathogenic fungi on insect physiology. The gas chromatography-mass spectrometry (GC-MS) method was successful for the determination of the organic compounds of Galleria mellonella larvae, noninfected and infected by three fungal species: M. robertsii, M. flavoviride, and I. fumosorosea. A total of 46 compounds were identified in G. mellonella, including fatty acids, other acids, fatty acid methyl esters, monoacylglycerols, amino acids, sterols, and several other organic compounds. The lipids of G. mellonella larvae after M. robertsii, M. flavoviride, and I. fumosorosea exposure contained 40, 35, and 33 organic compounds, respectively. The following organic compounds, present in the noninfected larvae, were absent from the infected larvae: fatty acids C22:0 and C24:0, glutaric acid, urocanic acid, hydroxycinnamic acid, dihydroxycinnamic acid, 10-oxodecanoic acid, glycine, aspartic acid, glutamic acid, lysine, tyrosine, tryptophan, 2-aminobutyric acid, and tyramine. These compounds can be used by fungi as an exogenous source of carbon. The following organic compounds, present in the infected larvae, were absent from the noninfected larvae: fatty acids C10:0, C11:0, C13:0, and C20:0, suberic acid, phenylacetic acid, fatty acid methyl ester (FAME) C16:0, FAME C18:2, FAME C18:1, glycerol 2-monopalmitate, norvaline, proline, sitosterol, and 2-dekanal. These compounds can be synthesized as an insect response to fungal infection.
Collapse
Affiliation(s)
- Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Aleksandra Bojke
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Cezary Tkaczuk
- Department of Plant Protection, Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
5
|
Kaczmarek A, Boguś MI, Włóka E, Wrońska AK, Krawiel A, Kazek M, Zalewska K, Kłocińska-Biały K, Sobocińska M, Gliniewicz A, Mikulak E, Matławska M. The interaction between cuticle free fatty acids (FFAs) of the cockroaches Blattella germanica and Blatta orientalis and hydrolases produced by the entomopathogenic fungus Conidiobolus coronatus. PLoS One 2020; 15:e0235785. [PMID: 32645074 PMCID: PMC7347226 DOI: 10.1371/journal.pone.0235785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
The interactions between entomopathogenic fungi and insects serve a classic example of a co-evolutionary arms race between pathogens and their target host. The cuticle, site of the first contact between insects and entomopathogenic fungus, is an important defensive barrier against pathogens. It is covered by a layer of lipids that appears to play a key role in these processes and cuticular free fatty acid (FFA) profiles are consider as a determinant of susceptibility, or resistance, to fungal infections. These profiles are species-specific. The cockroaches Blattella germanica (Blattodea: Blattidae) and Blatta orientalis (Blattodea: Ectobiidae) are unsusceptible to the soil fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae) infection, therefore we studied the profiles of FFAs in order to understand the defensive capabilities of the cockroaches. The fungus was cultivated for three weeks in minimal medium. Cell-free filtrate was obtained, assayed for elastase, N-acetylglucosaminidase, chitobiosidase and lipase activity, and then used for in vitro hydrolysis of the cuticle from wings and thoraces of adults and oothecae. The amounts of amino acids, N-glucosamine and FFAs released from the hydrolysed cuticle samples were measured after eight hours of incubation. The FFA profiles of the cuticle of adults, and the wings, thoraces and oothecae of both species were established using GC-MS and the results were correlated with the effectiveness of fungal proteases, chitinases and lipases in the hydrolyzation of cuticle samples. Positive correlations would suggest the existence of compounds used by the fungus as nutrients, whereas negative correlations may indicate that these compounds could be engaged in insect defence.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Emilia Włóka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Ewa Mikulak
- National Institute of Public Health–National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health–National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
6
|
Bojke A, Tkaczuk C, Bauer M, Kamysz W, Gołębiowski M. Application of HS-SPME-GC-MS for the analysis of aldehydes produced by different insect species and their antifungal activity. J Microbiol Methods 2020; 169:105835. [PMID: 31917975 DOI: 10.1016/j.mimet.2020.105835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 01/08/2023]
Abstract
In this study, a procedure was developed to determine aldehydes using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography (GC) coupled with mass spectrometry (MS). The aldehydes selected for research had previously been identified in various species of insects. Minimal inhibitory concentrations of the compounds against strains of entomopathogenic fungi were also determined. At the outset, the best SPME extraction conditions were chosen for the analysis to obtain good chromatographic separation. The analysis was carried out using a BZ-5 column and different SPME fibers were used to isolate the aldehydes. DVB/CAR/PDMS fiber appeared to be the most efficient coating for undertaking the measurements. The best parameters of separation by HS-SPME and analysis by GC-MS were selected. In addition, the aldehydes were tested for their potential antifungal activity. A procedure was developed to determine the aldehydes using HS-SPME-GC-MS. Heptanal, 2,4-nonadienal, 2-decenal and undecanal were the most effective antifungal compounds against entomopathogenic fungi.
Collapse
Affiliation(s)
- Alekandra Bojke
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Cezary Tkaczuk
- Department of Plant Protection and Breeding, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
7
|
Cerkowniak M, Boguś MI, Włóka E, Stepnowski P, Gołębiowski M. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds inDermestes maculatusandDermestes aterlipids. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/08/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Magdalena Cerkowniak
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; Gdańsk Poland
| | - Mieczysława I. Boguś
- Witold Stefański Institute of Parasitology of the Polish Academy of Sciences; Warszawa Poland
| | - Emilia Włóka
- Witold Stefański Institute of Parasitology of the Polish Academy of Sciences; Warszawa Poland
| | - Piotr Stepnowski
- Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; Gdańsk Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; Gdańsk Poland
| |
Collapse
|