1
|
Zhang Y, Hou B, Liu T, Wu Y, Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115248. [PMID: 37441951 DOI: 10.1016/j.ecoenv.2023.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
As a new type of environmental pollutant, microplastics have been garnered increasing attention, especially in regard to their effects on the reproductive system. However, researchers have yet to report whether prevention and treatment measures exist for reproductive injury caused by microplastics. The aim of this study was therefore to explore the mechanism of spermatogenic injury induced by polystyrene microplastics (PS-MPs) and the intervention effect of probiotics based on the gut microbiota-testis axis. Mice were orally exposed for 35 days to 5 µm of PS-MPs with a gavage dose was 0.1 mg/day, and the intervention group was given probiotics (Lactobacillus, Bifidobacterium longum, and Enterococcus) orally. Fecal samples were then subjected to 16 S rRNA sequencing analysis, and sperm motion was analyzed by a Hamilton-Thorne Sperm analyzer. The results showed that PS-MPs exposed mice had significant spermatogenic dysfunction and testicular inflammation. In addition, the intestinal microbial structure of exposed mice changed significantly; the abundance of Lactobacillus decreased, and the abundance of Prevotella increased. Furthermore, with fecal microbiota transplantation, the recipient mice showed a significant decrease in sperm quality. However, probiotics supplementation helped inhibit the activation of IL-17A signaling driven by gut microbes, thereby alleviating the inflammatory response and improving sperm quality decline caused by PS-MPs. These results may provide a scientific basis for further understanding of the mechanism of male reproductive damage caused by environmental pollutants such as microplastics and for novel reproductive damage intervention measures.
Collapse
Affiliation(s)
- Yecui Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baolian Hou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Wang L, Ji H, Ni S, Xu J, Zhang Y, Zhao X, Wu X, Tian J, Chen J. Antimalarial activity and sensitization of chrysosplenetin against artemisinin-resistant genotype Plasmodium berghei K173 potentially via dual-mechanism of maintaining host P-glycoprotein homeostasis mediated by NF-κB p52 or PXR/CAR signaling pathways and regulating heme/haemozoin metabolism. Phytother Res 2023. [PMID: 36938853 DOI: 10.1002/ptr.7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2023]
Abstract
This study investigated antimalarial efficacy and sensitization of chrysosplenetin against artemisinin-resistant Plasmodium berghei K173 and potential molecular mechanism. Our data indicated a risk of artemisinin resistance because a higher parasitaemia% and lower inhibition% under artemisinin treatment against resistant parasites than those in the sensitive groups were observed. Two non-antimalarial components, verapamil and chrysosplentin, being P-gp inhibitors, possessed a strong efficacy against resistant parasites but it was not the case for Bcrp inhibitor novobiocin. Artemisinin-chrysosplenetin combination improved artemisinin susceptibility of resistant P. berghei. Artemisinin activated intestinal P-gp and Abcb1/Abcg2 expressions and suppressed Bcrp whereas chrysosplenetin reversed them. Resistant parasite infection led to a decreased haemozoin in organs or an increased heme in peripheral bloods compared with the sensitives; however, that in Abcb1-deficient knockout (KO)-resistant mice reversely got increased or decreased versus wild type (WT)-resistant animals. Chrysosplenetin as well as rifampin (nuclear receptor agonist) increased the transcription levels of PXR/CAR while showed a versatile regulation on hepatic and enternal PXR/CAR in WT- or KO-sensitive or -resistant parasites. Oppositely, hepatic and enteric NF-κB p52 mRNA decreased conformably in WT but increased in KO-resistant mice. NF-κB pathway potentially involved in the mechanism of chrysosplenetin on inhibiting P-gp expressions while PXR/CAR play a more complicated role in this mechanism.
Collapse
Affiliation(s)
- Lirong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hongyan Ji
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shanhong Ni
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xuesong Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiuli Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jingxuan Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zonoses, Yangzhou, China
| |
Collapse
|
3
|
Wang Y, Tian J, Chen J, Ni S, Yao Y, Wang L, Wu X, Song R, Chen J. Nontargeted metabolomics integrated with 1 H NMR and LC-Q-TOF-MS/MS methods to depict a more comprehensive metabolic profile in response to chrysosplenetin and artemisinin co-treatment against artemisinin-sensitive and -resistant Plasmodium berghei K173. Biomed Chromatogr 2023; 37:e5561. [PMID: 36471489 DOI: 10.1002/bmc.5561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Our previous work revealed mutual and specific metabolites/pathways in artemisinin-sensitive and -resistant Plasmodium berghei K173-infected mice. In this study, we further investigated whether chrysosplenetin, a candidate chemical to prevent artemisinin resistance, can regulate these metabolites/pathways by integrating nontargeted metabolomics with 1 H NMR and LC-Q-TOF-MS/MS spectrum. The nuclear magnetic resonance method generated specifically altered metabolites in response to co-treatment with chrysosplenetin, including: the products of glycolysis such as glucose, pyruvate, lactate and alanine; taurine, closely associated with liver injury; arginine and proline as essential amino acids for parasites; TMAO, a biomarker for dysbacteriosis and renal function; and tyrosine, which is used to generate levodopa and dopamine and may improve the torpor state of mice. Importantly, we noticed that chrysosplenetin might depress the activated glycolysis induced by sensitive parasites, but oppositely promoted the inhibited glycolysis to generate more lactate, which suppresses the proliferation of resistant parasites. Moreover, chrysosplentin possibly disturbs the heme biosynthetic pathway in mitochondria. The MS method yielded changed coenzyme A, phosphatidylcholine and ceramides, closely related to mitochondria β-oxidation, cell proliferation, differentiation and apoptosis. These two means shared no overlapped metabolites and formed a more broader metabolic map to study the potential mechanisms of chrysosplenetin as a promising artemisinin resistance inhibitor.
Collapse
Affiliation(s)
- Yisen Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jingxuan Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jie Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shanhong Ni
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ying Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lirong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xiuli Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Zhuang W, He T, Jia BB, Wang ZZ, Zhang L, Dong XZ, Xi SY. Interaction between Chinese medicine and digoxin: Clinical and research update. Front Pharmacol 2023; 14:1040778. [PMID: 36825153 PMCID: PMC9941676 DOI: 10.3389/fphar.2023.1040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Digoxin is one of the most widely and commonly used cardiac drug, which plays an irreplaceable role in treating heart failure and arrhythmia. The 2010 Edition of Pharmacopoeia of the People's Republic of China stipulates that the effective range of digoxin plasma concentration is 0.5-2.0 ng/mL and it is toxic at plasma concentration >2 ng/mL. Its effective plasma drug concentration is close to the toxic concentration, and large individual differences in the effects of the drug have been observed. It is often used in combination with other drugs, but drug interactions have a great impact on the plasma concentration of digoxin and lead to adverse reactions (ADRs), such as poisoning. Most of the reported drug interactions are with Western drugs. However, there are many combinations of traditional Chinese medicine (TCM) and Western drugs, TCM interacting with digoxin comprises monomer components, single medicines, and Chinese patent medicines. Aim of the study: We aimed i) to provide an overview of the TCM formulations affecting the pharmacology of digoxin and their mechanisms of action and ii) to provide a theoretical reference for the safe and rational use of digoxin in combination with TCM in clinical practice and to avoid ADRs. Methods: A literature search of electronic databases, including PubMed, MEDLINE, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and WANFANG Data, was performed to search for articles published between 1 January 1960, and 1 August 2022. Search terms used included "digoxin," "traditional Chinese medicine," "Chinese patent medicine," and "adverse reactions" and their combinations. Results: A total of 49 articles were obtained, including clinical reports, pharmacological experiments and in vitro experiments. The mechanisms of action affecting the pharmacology of digoxin are complex. TCM formulations may affect the pharmacology of digoxin in vivo by influencing gastrointestinal motility or gastric juice pH, regulating P-glycoprotein levels, exerting cumulative pharmacological effects, and enhancing the sensitivity of the heart to digoxin. Although studies have shown that some TCM formulations interact with digoxin, they may be influenced by the complexity of the composition and the pharmacological effects of the TCM, the sensitivity of digoxin concentration determination methods, etc. The results of existing studies are controversial and further in-depth studies are required. Conclusion: Combinations of digoxin and TCM formulations are commonly used. This article serves as a reference to understand the interactions between TCM formulations and digoxin to avoid the occurrence of ADRs and improve the efficacy and safety of digoxin.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Tao He
- Department of Pharmacy, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei-Bei Jia
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Zhi-Zhou Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China,*Correspondence: Xian-Zhe Dong, ; Sheng-Yan Xi,
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Xian-Zhe Dong, ; Sheng-Yan Xi,
| |
Collapse
|
5
|
Rocha-Pereira C, Ghanem CI, Silva R, Casanova AG, Duarte-Araújo M, Gonçalves-Monteiro S, Sousa E, Bastos MDL, Remião F. P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicol Appl Pharmacol 2020; 386:114832. [PMID: 31756430 DOI: 10.1016/j.taap.2019.114832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
In vitro studies showed that 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) increases P-glycoprotein (P-gp) expression and activity in Caco-2 cells, preventing xenobiotic toxicity. The present study aimed at investigating TX5 effects on P-gp expression/activity using Wistar Han rats: a) in vivo, evaluating intestinal P-gp activity; b) ex vivo, evaluating P-gp expression in ileum brush border membranes (BBM) and P-gp activity in everted intestinal sacs; c) ex vivo, evaluating P-gp activity in everted intestinal sacs of the distal and proximal ileum. TX5 (30 mg/kg, b.w.), gavage, activated P-gp in vivo, given the significant decrease in the AUC of digoxin (0.25 mg/kg, b.w.). The efflux of rhodamine 123 (300 μM), a P-gp fluorescent substrate, significantly increased in TX5-treated everted sacs from the distal portion of the rat ileum, when P-gp activity was evaluated in the presence of TX5 (20 μM), an effect abolished by the P-gp inhibitor verapamil (100 μM). No increases on P-gp expression or activity were found in TX5-treated BBM of the distal ileum and everted distal sacs, respectively, 24 h after TX5 (10 mg/kg, b.w.) administration. In vivo, no differences were found on digoxin portal concentration between control (digoxin 0.025 mg/kg, b.w., intraduodenal) and TX5-treated (digoxin+TX5 20 μM, intraduodenal) rats. The observed discrepancies in digoxin results can be related to differences in TX5 dose administered and used methodologies. Thus, the results show that TX5 activates P-gp at the distal portion of the rat ileum, and, at the higher dose tested (30 mg/kg, b.w.), seems to modulate in vivo the AUC of P-gp substrates.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|