1
|
Wang L, Wu J, Chen J, Dou W, Zhao Q, Han J, Liu J, Su W, Li A, Liu P, An Z, Xu C, Sun Y. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Talanta 2021; 226:122097. [PMID: 33676654 DOI: 10.1016/j.talanta.2021.122097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Standard two/three dimensional (2D/3D)-cell culture platforms have facilitated the understanding of the communications between various cell types and their microenvironments. However, they are still limited in recapitulating the complex functionalities in vivo, such as tissue formation, tissue-tissue interface, and mechanical/biochemical microenvironments of tissues and organs. Intestine-on-a-chip platforms offer a new way to mimic intestinal behaviors and functionalities by constructing in vitro intestinal models in microfluidic devices. This review summarizes the advances and limitations of the state-of-the-art 2D/3D-cell culture platforms, animal models, intestine chips, and the combined multi-organ chips related with intestines. Their applications to studying intestinal functions, drug testing, and disease modeling are introduced. Different intestinal cell sources are compared in terms of gene expression abilities and the recapitulated intestinal morphologies. Among these cells, cells isolated form human intestinal tissues and derived from pluripotent stem cells appear to be more suitable for in vitro reconstruction of intestinal organs. Key challenges of current intestine-on-a-chip platforms and future directions are also discussed.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Wu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300350, China
| | - Junlei Han
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jinliang Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhao An
- Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chonghai Xu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|