1
|
Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115578. [PMID: 35917892 DOI: 10.1016/j.jep.2022.115578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.
Collapse
Affiliation(s)
- Xiaonian Peng
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Fang Tang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Sha Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Weihua Wu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
2
|
Gao M, Lan J, Zhang Y, Yu S, Bao B, Yao W, Cao Y, Shan M, Cheng F, Zhang L, Chen P. Discovery of processing-associated Q-marker of carbonized traditional Chinese medicine: An integrated strategy of metabolomics, systems pharmacology and in vivo high-throughput screening model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154152. [PMID: 35636167 DOI: 10.1016/j.phymed.2022.154152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbonized traditional Chinese medicine (TCM) is a kind of distinctive traditional medicine, which has been widely used to cure various bleeding syndromes in clinic for over 2000 years. However, there are no effective quality control methods developed on carbonized TCM so far. PURPOSE This study aimed at developing a processing-associated quality marker (Q-marker) discovery strategy, which would enable to promote the quality control study of carbonized TCM. METHODS Carbonized Typhae Pollen (CTP), a typical carbonized TCM with fantastic efficacy of stanching bleeding and removing blood stasis, was used as an example. First, a ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method was established to characterize four types of CTP in different processing degrees. Second, chemometric method was applied to screen candidate Q-markers. Third, peak area changes and Aratio changes of each candidate markers in 57 batches samples were described (Traceability and Transitivity). Fourth, systems pharmacology and two high-throughput zebrafish models: cerebral hemorrhage model and thrombus model were used to furtherly screen Q-markers (Effectiveness). Finally, a ultraperformance liquid chromatographic coupled with triple quadrupole tandem mass spectrometry (UPLC-TQ-MS) method was established and applied to quantify Q-markers in additional 10 batches of CTP samples (Measurability). RESULTS The chemical profiles of Typhae Pollen during the carbonized process were investigated. Then, 12 candidate compounds were screened in chemometric part. Six Q-markers (isorhamnetin-3-O-neohesperidoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-neohesperidoside, naringenin, quercetin and isorhamnetin) were subsequently screened out using three principles of Q-markers combined with content changes and two in vivo zebrafish models. Their average contents in additional 10 batches of CTP were 316.8 μg/g, 13.7 μg/g, 6.1 μg/g, 197.8 μg/g, 12.9 μg/g and 199.3 μg/g, respectively. Their content proportion was about 25: 1: 0.5: 15: 1: 15. CONCLUSION A processing-associated Q-marker discovery strategy was developed for carbonized TCM. It might provide a novel insight to solve the problem of 'Chao Tan Cun Xing' in carbonized process.
Collapse
Affiliation(s)
- Mingliang Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Jinshan Lan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yusong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| |
Collapse
|
3
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
4
|
Liang Y, Ma T, Li Y, Cai N. A rapid and sensitive LC-MS/MS method for the determination of vanillic acid in rat plasma with application to pharmacokinetic study. Biomed Chromatogr 2021; 36:e5248. [PMID: 34555192 DOI: 10.1002/bmc.5248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/05/2022]
Abstract
Vanillic acid, a phenolic compound isolated from Angelica sinensis and green tea, exhibits excellent antioxidant and anti-inflammatory activities. In this study, a rapid and sensitive ultra-high-performance liquid chromatography tandem mass spectrometry method was established and validated for the determination of vanillic acid in rat plasma. Plasma samples were prepared by protein precipitation with acetonitrile. Chromatographic separation was performed on a Zorbax RRHD Eclipse Plus C18 column (2.1 × 100 mm, 1.8 μm) with gradient elution at a flow rate of 0.3 ml/min, using mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). Vanillic acid and caffeic acid (internal standard, IS) were quantified by multiple reaction monitoring in negative ion mode. The method was fully validated according to the US Food and Drug Administration guidelines. The calibration curve was linear over the range of 2-1,000 ng/ml with a correlation coefficient of >0.99. The carryover, matrix effect, extraction recovery, dilution effect, intra- and interday precision and accuracy were within acceptable limits. The method was then applied to a pharmacokinetic study of vanillic acid in rats. After oral administration at doses of 2, 5 and 10 mg/kg, the plasma concentration reached peaks of 0.42 ± 0.09, 0.73 ± 0.21 and 0.92 ± 0.28 μg/ml at the time of 0.55-0.64 h, respectively. The oral bioavailability was calculated as 25.3-36.2% in rat plasma. The result provided pre-clinical information for further application of vanillic acid.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Genetics, Northwest Women's and Children's Hospital, China
| | - Tiancheng Ma
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, China
| | - Yuwei Li
- Department of Genetics, Northwest Women's and Children's Hospital, China
| | - Na Cai
- Department of Genetics, Northwest Women's and Children's Hospital, China
| |
Collapse
|
5
|
Wang X, Li J, Yang X, Gao X, Wang H, Chang Y. A rapid and efficient extraction method based on industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction with response surface methodology for simultaneous quantification of six flavonoids in
Pollen typhae
by ultra‐high‐performance liquid chromatography. J Sep Sci 2019; 42:2426-2434. [DOI: 10.1002/jssc.201900227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyan Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- School of PharmacyHarbin University of Commerce Harbin P. R. China
| | - Xiu‐mei Gao
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- College of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yan‐xu Chang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| |
Collapse
|