1
|
Chakraborty D, Malik S, Mann S, Agnihotri P, Joshi L, Biswas S. Chronic disease management via modulation of cellular signaling by phytoestrogen Bavachin. Mol Biol Rep 2024; 51:921. [PMID: 39158613 DOI: 10.1007/s11033-024-09849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Malik
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Mann
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lovely Joshi
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Tang H, Guo S, Xue H, Guo Z, Li Y, Yu Q, Liu Y, Zhou W, Ye S. Antiparasitic efficacy of flavonoids identified from Psoralea corylifolia against Tetrahymena piriformis in guppy (Poecilia reticulate). Vet Parasitol 2024; 328:110167. [PMID: 38518713 DOI: 10.1016/j.vetpar.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Tetrahymena piriformis belongs to the ciliated protists (ciliates), causing severe economic losses in aquaculture. Chemical drugs currently used usually have toxic side effects, and there is no specific drug against Tetrahymena. Therefore, it is an urgent need to identify new antiparasitic lead compounds. In the present study, the in vitro parasiticidal activity of ethyl acetate (EtOAc) extracts and water extracts from 22 selected traditional Chinese medicines (TCMs) were evaluated against T. piriformis. The EtOAc extract of P. corylifolia turned out to be the most active with the minimum parasiticidal concentration of 100 mg/L within 3 h. Thus, it was separated into 12 fractions by the first-dimensional (D1) normal phase liquid chromatography (NPLC), meanwhile combining with in vitro antiparasitic tests for activity tracking. Subsequently, 8 flavonoids were identified in the active fractions by the second-dimensional (D2) reverse phase liquid chromatography (RPLC) tandem high-resolution mass spectrometry. According to the results, 5 flavonoids were selected for in vitro antiparasitic test, of which isobavachalcone showed the minimum parasiticidal concentration of 3.125 mg/L in 2 h. Bathing treatment of infected guppies with isobavachalcone could significantly reduce the burden of T. piriformis, obtaining a 24-h median effective concentration (24-h EC50) value of 1.916 mg/L. And the concentration of isobavachalcone causing guppies to die within 24 h is 39 times than that of 24-h EC50. The results demonstrated that isobavachalcone has the potential to be developed into a novel commercial fish drug against T. piriformis.
Collapse
Affiliation(s)
- Hongming Tang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Sicong Guo
- Baoqing County Aquatic Technology Extension Sation, Baoqing, Heilongjiang, China.
| | - Hongxin Xue
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Zhixin Guo
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Yihao Li
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Qinghua Yu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yuxiao Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Weijia Zhou
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Shigen Ye
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
3
|
Yu X, Wang Y, Wu Z, Jia M, Xu Y, Qu H, Zhao X, Wang S, Jing L, Lou Y, Fan G, Gui Y. Multi-technology integrated network pharmacology-based study on phytochemicals, active metabolites, and molecular mechanism of Psoraleae Fructus to promote melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117755. [PMID: 38218502 DOI: 10.1016/j.jep.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica (Shizhen Li, Ming dynasty) and Welfare Pharmacy (Song dynasty), Psoraleae Fructus (PF), a traditional Chinese medicine (TCM) has a bitter taste and warm nature, which has the effect of treating spleen and kidney deficiency and skin disease. Although PF has been widely used since ancient times and has shown satisfactory efficacy in treating vitiligo, the active substances and the mechanism of PF in promoting melanogenesis remain unclear. AIM OF THE STUDY To explore the active substances and action mechanisms of PF in promoting melanogenesis. MATERIALS AND METHODS Firstly, UPLC-UV-Q-TOF/MS was used to characterize the components in PF extract and identify the absorption components and metabolites of PF after oral administration at usual doses in rats. Secondly, the active substances and related targets and pathways were predicted by network pharmacology and molecular docking. Finally, pharmacodynamic and molecular biology experiments were used to verify the prediction results. RESULTS The experimental results showed that 15 compounds were identified in PF extract, and 44 compounds, consisting of 8 prototype components and 36 metabolites (including isomers) were identified in rats' plasma. Promising action targets (MAPK1, MAPK8, MAPK14) and signaling pathways (MAPK signaling pathway) were screened and refined to elucidate the mechanism of PF against vitiligo based on network pharmacology. Bergaptol and xanthotol (the main metabolites of PF), psoralen (prototype drug), and PF extract significantly increased melanin production in zebrafish embryos. Furthermore, bergaptol could promote the pigmentation of zebrafish embryos more than psoralen and PF extract. Bergaptol significantly increased the protein expression levels of p-P38 and decreased ERK phosphorylation in B16F10 cells, which was also supported by the corresponding inhibitor/activator combination study. Moreover, bergaptol increased the mRNA expression levels of the downstream microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Our data elucidate that bergaptol may promote melanogenesis by regulating the p-P38 and p-ERK signaling pathway. CONCLUSIONS This study will lay a foundation for discovering potential new drugs for treating vitiligo and provide feasible ideas for exploring the mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Han Qu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
4
|
Li Y, Wu X, Ma Y, Xu L, Yang C, Peng D, Guo X, Wei J. Quantitative analysis of multi-components by single marker method combined with UPLC-PAD fingerprint analysis based on saikosaponin for discrimination of Bupleuri Radix according to geographical origin. Front Chem 2024; 11:1309965. [PMID: 38313222 PMCID: PMC10834642 DOI: 10.3389/fchem.2023.1309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Background: Saikosaponins are regarded as one of the most likely antipyretic constituents of Bupleuri Radix, establishing a comprehensive method that can reflect both the proportion of all constituents and the content of each saikosaponin is critical for its quality evaluation. Methods: In this study, the combination method of quantitative analysis of multiple components with a single marker (QAMS) and fingerprint was firstly established for simultaneous determination of 7 kinds of saikosaponins in Bupleuri Radix by ultra-high performance liquid chromatography (UPLC). Results: The results showed that saikosaponin d was identified as the optimum IR by evaluating the fluctuations and stability of the relative calibration factors (RCFs) under four different conditions. The new QAMS method has been confirmed to accurately quantify the 7 kinds of saikosaponins by comparing the obtained results with those obtained from external standard method and successfully classify the 20 batches of Bupleuri Radix from 8 provinces of China. The experimental time of fingerprint was significantly reduced to approximate 0.5 h through UPLC-PAD method, a total of 17 common peaks were identified. Conclusion: The QAMS-fingerprint method is feasible and reliable for the quality evaluation of Bupleuri Radix. This method could be considered to be spread in the production enterprises of Bupleuri Radix.
Collapse
Affiliation(s)
- Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengmin Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongqin Peng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Kurpet K, Chwatko G. Development of a new chromatographic method for the determination of bakuchiol in cosmetic products. Sci Rep 2023; 13:13893. [PMID: 37620384 PMCID: PMC10449805 DOI: 10.1038/s41598-023-41076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this study was to develop and validate a simple, fast, and universal reversed-phase high-performance liquid chromatography method with fluorescence detection for the quantitation and evaluation of the stability of bakuchiol in cosmetic products. The analyte was extracted by tetrahydrofuran and separated on a Zorbax Eclipse Plus C18 analytical column (100 × 4.6 mm, 3.5 μm particle size) by a gradient elution program with the mobile phase consisting of water and acetonitrile and a flow rate of 1.0 mL min-1. The column temperature was held at 25 °C and fluorescence detection was performed at excitation and emission wavelengths of 264 and 338 nm, respectively. The stability studies of bakuchiol in cosmetic products were conducted under various conditions, including thermal and photolytic degradation, according to International Conference on Harmonization Guidelines. The calibration curve was linear in the range of 0.5-50.0 μg g-1 with a correlation coefficient greater than 0.9999. The limits of detection and quantification of the method were 0.1 and 0.5 μg g-1, respectively. Recovery values were in the range of 93.37-106.39 μg g-1, with relative standard deviations less than 6%. The method has been successfully applied to analyze different types of cosmetic products and proved to be reliable.
Collapse
Affiliation(s)
- Katarzyna Kurpet
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland.
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Street, 90-236, Lodz, Poland.
| | - Grażyna Chwatko
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Street, 90-236, Lodz, Poland
| |
Collapse
|
6
|
Chen Y, Tang L, Wu M, Shu L, Xu Y, Yao Y, Li Y. A practical method for rapid discrimination of constituents in Psoraleae Fructus by UPLC-Q-Orbitrap MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4966. [PMID: 37464553 DOI: 10.1002/jms.4966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Psoraleae Fructus (PF) is one of the most frequently used traditional Chinese medicine, which has good efficacy in warming kidney to activate yang, promoting inspiration to relieve asthma and warming spleen to stop diarrhea. However, the chemical composition of PF is complex, which makes it difficult to determine its active and toxic components. In order to rapidly classify and identify the chemical components of the extracts from PF, this research was processed with CNKI, PubMed, and PubChem databases and data post-processing technique basing on ultrahigh performance liquid chromatography quadrupole orbitrap mass spectrometry (UPLC-Q-Orbitrap MS) technique. Finally, 73 chemical components were discriminated, including 44 flavonoids, 18 coumarins, and 11 terpenoids, with the cleavage rules of each chemical component summarized. This study established a UPLC-Q-Orbitrap MS method for the separation and discrimination of the chemical constituents of PF, which can lay a foundation for the further study of its medicinal substances and quality control.
Collapse
Affiliation(s)
- Yanyan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luhuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengru Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Su B, Tian J, Wang K, Yang W, Ning J, Liang Y, Liu Y, Li Y, Zheng G. Qualitative and Quantitative Analyses of the Chemical Components of Peels from Different Pomelo Cultivars ( Citrus grandis [L.] Osbeck) Based on Gas Chromatography-Mass Spectrometry, Ultraperformance Liquid Chromatography-Q-Exactive Orbitrap-MS, and High-Performance Liquid Chromatography-Photodiode Array Detection. ACS OMEGA 2023; 8:6253-6267. [PMID: 36844509 PMCID: PMC9948162 DOI: 10.1021/acsomega.2c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The volatile and nonvolatile phytochemicals in peels of 5 major pomelo cultivars (including Citrus grandis cv. Yuhuanyou, C. grandis cv. Liangpingyou, C. grandis cv. Guanximiyou, C. grandis cv. Duweiwendanyou, and C. grandis cv. Shatianyou) from 11 places in China were characterized. First, 194 volatile compounds in pomelo peels were identified by gas chromatography-mass spectrometry (GC-MS). Of these, 20 major volatile compounds were subjected to cluster analysis. The heatmap indicated that the volatile compounds in peels of C. grandis cv. Shatianyou and C. grandis cv. Liangpingyou were different from those in other varieties, while there was no difference among C. grandis cv. Guanximiyou, C. grandis cv. Yuhuanyou, and C. grandis cv. Duweiwendanyou from different origins. Second, 53 nonvolatile compounds were identified in pomelo peels by ultraperformance liquid chromatography-Q-exactive orbitrap tandem MS (UPLC-Q-exactive orbitrap-MS), of which 11 components were detected for the first time. Third, six major nonvolatile compounds were quantitatively analyzed with high-performance LC-photodiode array detection (HPLC-PDA). Combining the results of HPLC-PDA and the heatmap, 6 nonvolatile compounds in 12 batches of pomelo peel were well separated among varieties. Comprehensive analysis and identification of chemical components in pomelo peels are of great significance for their further development and utilization.
Collapse
|
8
|
Mu L, Dai H, Fei C, Li W, Xue Q, Xu Y, Li L, Li W, Yin W, Yin F. Study on the processing chemistry of Fructus Psoraleae by a combination of untargeted and targeted metabolomics. J Sep Sci 2022; 45:4280-4291. [PMID: 36168848 DOI: 10.1002/jssc.202200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022]
Abstract
Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.
Collapse
Affiliation(s)
- Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Dai
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
9
|
Xing N, Meng X, Wang S. Isobavachalcone: A comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytother Res 2022; 36:3120-3142. [PMID: 35684981 DOI: 10.1002/ptr.7520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Isobavachalcone (IBC), also known as isobapsoralcone, is a natural flavonoid widely derived from many medicinal plants, including Fabaceae, Moraceae, and so forth. IBC has been paid more and more attention by researchers in recent years due to its pharmacological activity in many diseases. This review aims to describe in detail the plant sources, pharmacokinetics, toxicity, pharmacological activities, and molecular mechanisms of IBC on various diseases. We found that IBC can be obtained not only by extraction but also by chemical synthesis. Pharmacokinetic studies have shown that IBC has low bioavailability, but can penetrate the blood-brain barrier and is widely distributed in the brain. Its pharmacological activities mainly include anticancer, antibacterial, anti-inflammatory, antiviral, neuroprotective, bone protection, and other activities. In particular, IBC shows strong anti-tumor and anti-inflammatory therapeutic potential due to its anti-cancer and anti-inflammatory activities. However, due to its hepatotoxicity, there may be more drug interactions. Therefore, more and more in-depth studies are needed for its clinical application. Mechanically, IBC can induce the production of reactive oxygen species (ROS), inhibit AKT, ERK, and Wnt pathways, and promote apoptosis of cancer cells through mitochondrial or endoplasmic reticulum pathways. IBC can inhibit the NF-κB pathway and the production of multiple inflammatory mediators by activating NRF2/HO-1 pathway, thus producing anti-inflammatory effects. Moreover, we discussed the limitations of current research on IBC and put forward some new perspectives and challenges, which provide a strong basis for clinical application and new drug development of IBC in the future.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Su B, Tian J, Liu M, Wang K, Yang W, Ning J, Li Y, Zheng G. Analysis of the chemical components of pomelo peels (Citrus grandis [L.] Osbeck) from different cultivars by using supercritical CO 2 fluid extraction and UHPLC-MS/MS. J Sep Sci 2022; 45:3031-3042. [PMID: 35608564 DOI: 10.1002/jssc.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022]
Abstract
Five pomelo cultivars (i.e., Citrus grandis cv. Shatianyou, Citrus grandis cv. Guanximiyou, Citrus grandis cv. Yuhuanyou, Citrus grandis cv. Duweiwendanyou and Citrus grandis cv. Liangpingyou) from different origins in China were selected to analyse their components by using supercritical CO2 fluid extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. A total of 45 compounds were identified in the supercritical CO2 fluid extracts of the pomelo peels from the five cultivars. These compounds included 8 flavonoids, 18 coumarins, 4 organic acids, 3 aldehydes and 12 other compounds, which were identified using the obtained MS data and by comparison with commercial standards, Orbitrap Chinese Traditional Medicine Library and previous literature. Twenty-five of the identified compounds were detected for the first time in the pomelo peel extracts. Results suggested that the pomelo peels of C. grandis cv. Shatianyou contained the most natural chemical compositions. The pooled result may offer a scientific evidence for further development and utilisation of pomelo peels and a route for screening appropriate varieties for various demands. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boqing Su
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jingyuan Tian
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengshi Liu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kanghui Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanling Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinrong Ning
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongmei Li
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guodong Zheng
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
11
|
Shen M, Zhang Q, Qin L, Yan B. Single Standard Substance for the Simultaneous Determination of Eleven Components in the Extract of Paeoniae Radix Alba (Root of Paeonia lactiflora Pall.). JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8860776. [PMID: 34094615 PMCID: PMC8140825 DOI: 10.1155/2021/8860776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/04/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Paeoniae Radix Alba (PRA), an herbal drug produced from the root of Paeonia lactiflora Pall., is widely used in many herbal medicine prescriptions/preparations. Since the pharmacological effects of PRA come from multiple chemical components, it is important to establish a method for the determination of those components in PRA extracts with simple operation and low cost, which is more suitable to evaluate the quality of PRA extracts and optimize the extraction process. This work introduced the quantitative analysis of multicomponents with a single-marker (QAMS) method for the simultaneous determination of eleven bioactive components in PRA extracts, including gallic acid, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, ethyl gallate, galloylpaeoniflorin, pentagalloylglucose, benzoic acid, benzoylpaeoniflorin, and paeonol. In the QAMS method established based on high performance liquid chromatography with diode array detection, only the reference substance of paeoniflorin was needed, and the other ten components were determined based on their relative correction factors (RCFs) to paeoniflorin. Moreover, the repeatability and robustness of the RCFs were studied with different column temperatures, detection wavelengths, flow rates, column types, and instruments. In method validation, good linearity (r > 0.999), stability, repeatability (RSD < 1.9%), and accuracy (recoveries within 96.1%-105.5%) were shown. Sample analyses showed that the QAMS method was consistent with the conventional external standard method. The established method provided a comprehensive, efficient, and low-cost tool for the routine quality evaluation of PRA extracts.
Collapse
Affiliation(s)
- Menglan Shen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiaoyan Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Luping Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binjun Yan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
12
|
Wang S, Gan Y, Kan H, Mao X, Wang Y. Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS). Molecules 2021; 26:479. [PMID: 33477507 PMCID: PMC7831056 DOI: 10.3390/molecules26020479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
As one of the featured products in northeast China, Oviductus Ranae has been widely used as a nutritious food, which contains a variety of bioactive unsaturated fatty acids (UFAs). It is necessary to establish a scientific and reliable determination method of UFA contents in Oviductus Ranae. In this work, six principal UFAs in Oviductus Ranae, namely eicosapentaenoic acid (EPA), linolenic acid (ALA), docosahexaenoic acid (DHA), arachidonic acid (ARA), linoleic acid (LA) and oleic acid (OA), were identified using UPLC-MS/MS. The UFAs identified in Oviductus Ranae were further separated based on the optimized RP-HPLC conditions. Quantitative analysis of multi-components by single-marker (QAMS) method was implemented in content determination of EPA, ALA, DHA, ARA and OA, where LA was used as the internal standard. The experiments based on Taguchi design verified the robustness of the QAMS method on different HPLC instruments and chromatographic columns. The QAMS and external standard method (ESM) were used to calculate the UFA content of 15 batches of Oviductus Ranae samples from different regions. The relative error (r < 0.73%) and cosine coefficient showed that the two methods obtained similar contents, and the method validations met the requirements. The results showed that QAMS can comprehensively and effectively control the quality of UFAs in Oviductus Ranae which provides new ideas and solutions for studying the active components in Oviductus Ranae.
Collapse
Affiliation(s)
- Shihan Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin, China; (H.K.); (X.M.)
| | - Yuanshuai Gan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, Jilin, China;
| | - Hong Kan
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin, China; (H.K.); (X.M.)
| | - Xinxin Mao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin, China; (H.K.); (X.M.)
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, Jilin, China;
| |
Collapse
|
13
|
Hou XD, Song LL, Cao YF, Wang YN, Zhou Q, Fang SQ, Wu DC, Zang SZ, Chen L, Bai Y, Ge GB, Hou J. Pancreatic lipase inhibitory constituents from Fructus Psoraleae. Chin J Nat Med 2020; 18:369-378. [PMID: 32451094 DOI: 10.1016/s1875-5364(20)30043-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Pancreatic lipase (PL), a crucial enzyme in the digestive system of mammals, has been proven as a therapeutic target to prevent and treat obesity. The purpose of this study is to evaluate and characterize the PL inhibition activities of the major constituents from Fructus Psoraleae (FP), one of the most frequently used Chinese herbs with lipid-lowering activity. To this end, a total of eleven major constituents isolated from Fructus Psoraleae have been obtained and their inhibition potentials against PL have been assayed by a fluorescence-based assay. Among all tested compounds, isobavachalcone, bavachalcone and corylifol A displayed strong inhibition on PL (IC50 < 10 μmol·L-1). Inhibition kinetic analyses demonstrated that isobavachalcone, bavachalcone and corylifol A acted as mixed inhibitors against PL-mediated 4-methylumbelliferyl oleate (4-MUO) hydrolysis, with the Ki values of 1.61, 3.77 and 10.16 μmol·L-1, respectively. Furthermore, docking simulations indicated that two chalcones (isobavachalcone and bavachalcone) could interact with the key residues located in the catalytic cavity of PL via hydrogen binding and hydrophobic interactions. Collectively, these finding provided solid evidence to support that Fructus Psoraleae contained bioactive compounds with lipid-lowering effects via targeting PL, and also suggested that the chalcones in Fructus Psoraleae could be used as ideal leading compounds to develop novel PL inhibitors.
Collapse
Affiliation(s)
- Xu-Dong Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Li-Lin Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China; Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yun-Feng Cao
- Dalian Runsheng Kangtai Medical Laboratory Co. Ltd., Dalian 116000, China
| | - Yi-Nan Wang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Sheng-Quan Fang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Da-Chang Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Shi-Zhu Zang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Lu Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Yue Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Guang-Bo Ge
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
14
|
Su C, Li C, Sun K, Li W, Liu R. Quantitative analysis of bioactive components in walnut leaves by UHPLC-Q-Orbitrap HRMS combined with QAMS. Food Chem 2020; 331:127180. [DOI: 10.1016/j.foodchem.2020.127180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
|
15
|
Chromatographic fingerprints analysis and determination of seven components in Danmu preparations by HPLC-DAD/QTOF-MS. Chin Med 2020; 15:19. [PMID: 32095157 PMCID: PMC7027017 DOI: 10.1186/s13020-020-00301-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Danmu preparations (Danmu Capsule and Danmu Syrup), which are made from Nauclea officinalis stem extracts, have good clinical efficacy in acute tonsillitis, acute pharyngitis and upper respiratory tract infection. However, there is currently no reliable and systematic method to control the quality of these two Danmu preparations. Methods Using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD), the fingerprints of the Danmu preparations were established at 250 nm to comprehensively investigate the stability of preparation process. The chemical constituents in the Danmu preparations were separated and identified by HPLC coupled with quadrupole-time-of-flight high-definition mass spectrometry (HPLC–Q-TOF-MS). And seven major components were simultaneously determined at dual wavelengths (250 nm, 326 nm). Results The results of HPLC fingerprint similarity evaluation showed that the similarity values of 25 batches of Danmu preparations were more than 0.993. Twenty-three compounds, including 10 alkaloids, 6 phenolic acids, 2 iridoids, and 5 unknown compounds, were identified or tentatively characterized according to the retention times and MS/MS fragment patterns of compounds. The developed assay method of seven components was validated with acceptable linearity, precision, repeatability, stability and recovery. The contents of strictosamide belonging to alkaloids as the most abundant constituent in Danmu Capsule and Danmu Syrup were 43,681.20–99,652.49 μg/g and 1567.83–2427.25 μg/mL respectively. The contents of protocatechuic acid which were the highest in measured phenolic acids were 2633.01–7739.78 μg/g in Danmu Capsule and 192.05–448.71 μg/mL in Danmu Syrup, respectively. As an iridoid, the contents of sweroside in Danmu Capsule and Danmu Syrup were 1573.82–2789.81 μg/g and 70.32–182.81 μg/mL, respectively. Conclusion The established qualitative analysis method of fingerprint can be used to attain standardization, uniformity and stability of the preparation process. Meanwhile, the quantitative analysis in this study can be used as an accurate assay method for preparations.
Collapse
|
16
|
Zhang Y, Ding Y, Zhang T, Jiang X, Yi Y, Zhang L, Chen Y, Li T, Kang P, Tian J. Quantitative Analysis of Twelve Active Components Combined With Chromatographic Fingerprint for Comprehensive Evaluation of Qinma Prescription by Ultra-Performance Liquid Chromatography Coupled With Diode Array Detection. J Chromatogr Sci 2019; 57:855-865. [PMID: 31560746 DOI: 10.1093/chromsci/bmz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/16/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
Abstract
A combination method of ultra-performance liquid chromatography (UPLC) coupled with diode array detection has been developed for quality evaluation of Qinma prescription (QMP), based on chromatographic fingerprint technology with the similarity analysis (SA) and the quantitative analysis of 12 components by hierarchical cluster analysis (HCA). The established method has been validated by linearity, precision, repeatability, stability and recovery tests. The UPLC fingerprints with 17 common peaks of 5 QMP samples prepared by different extraction methods including water decoction extraction, water extraction-ethanol precipitation method, ethanol reflux extraction, ethanol extraction-water precipitation method and methanol ultrasonic extraction were obtained, and the SA results indicated that similarity index was greatly influenced by the large peak. The similarity index ranged from 0.816 to 0.999 basing on 17 peaks, which has been decreased to 0.683-0.999 basing on 16 peaks without the large peak of baicalin (BA). The results of simultaneous quantification of 12 components in these 5 QMP samples proved that BA, gallic acid (GA), wogonoside (WOG) and gentiopicroside (GEN) were the major ingredients in QMP with high contents >1.44 (mg/g), indicating that ethanol reflux was the most effective extraction method. Integrating fingerprint analysis, simultaneous determination and HCA, the established method is rapid, sensitive, accurate and readily applicable. All the results indicated that the combination method can control the quality of QMP and its related traditional Chinese medicinal compounds more comprehensively and scientifically.
Collapse
Affiliation(s)
- Yi Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China.,Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Xiaoyi Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Yaxiong Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Lijuan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Yi Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Ting Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China.,Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Ping Kang
- Headmaster's Office, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| | - Juanjuan Tian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, PR China
| |
Collapse
|
17
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
18
|
Cui K, Cao Y, Shao J, Lu Z, Wang L. Quantitative analysis of multicomponents by a single marker and quality evaluation of Venenum Bufonis from different geographical origins. Biomed Chromatogr 2019; 33:e4555. [DOI: 10.1002/bmc.4555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ke‐ke Cui
- College of Pharmaceutical SciencesZhejiang University Hangzhou China
| | - Yue‐ting Cao
- College of Pharmaceutical SciencesZhejiang University Hangzhou China
| | - Jia‐feng Shao
- Jiangsu Jingchan Biological Resources Development Co., Ltd Huaian China
| | - Zheng‐yu Lu
- Jiangsu Jingchan Biological Resources Development Co., Ltd Huaian China
| | - Long‐hu Wang
- College of Pharmaceutical SciencesZhejiang University Hangzhou China
| |
Collapse
|
19
|
Screening the Marker Components in Psoralea corylifolia L. with the Aids of Spectrum-Effect Relationship and Component Knock-Out by UPLC-MS². Int J Mol Sci 2018; 19:ijms19113439. [PMID: 30400170 PMCID: PMC6274892 DOI: 10.3390/ijms19113439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/11/2023] Open
Abstract
Psoralea corylifolia L., (P. corylifolia), which is used for treating vitiligo in clinic, shows inhibitory and activating effects on tyrosinase, a rate-limiting enzyme of melanogenesis. This study aimed to determine the active ingredients in the ethenal extracts of P. corylifolia on tyrosinase activity. The spectrum-effect relationship and knock-out method were established to predict the active compounds. Their structures were then identified with the high resolution mass spectra. A high performance liquid chromatography method was established to obtain the specific chromatograms. Tyrosinase activity in vitro was assayed by the method of oxidation rate of levodopa. Partial least squares method was used to test the spectrum-effect relationships. Chromatographic peaks P2, P4, P9, P10, P11, P13, P21, P26, P28, and P30 were positively related to the activating effects on tyrosinase activity in PE, whereas chromatographic peaks P1, P3, P6, P14, P16, P19, P22, and P29 were negatively related to the activating effects on tyrosinase in the P. corylifolia (PEs). When the sample concentration was 0.5 g·mL−1, equal to the amount of raw medicinal herbs, the target components were daidzein (P2), psoralen (P5), neobavaisoflavone (P13), and psoralidin (P20), which were consistent with the results of spectrum-effect relationships.
Collapse
|
20
|
Wu R, Lin S, Wang J, Tian S, Ke X, Qu Y, Tian X, Qi X, Ye J, Zhang W. Rapid characterization of chemical constituents and metabolites of Qi-Jing-Sheng-Bai granule by using UHPLC-Q-TOF-MS. J Sep Sci 2018; 41:1960-1972. [PMID: 29385310 DOI: 10.1002/jssc.201701310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Qi-Jing-Sheng-Bai granule is an effective traditional Chinese medicine formula that has been widely used for the treatment of leukopenia post radiotherapy or chemotherapy. However, its chemical constituents were still unclear, which hindered interpreting bioactive constituents and studying integrative mechanisms. In this study, we developed a three-step strategy to characterize the chemical constituents and metabolites of Qi-Jing-Sheng-Bai by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 143 compounds, including 56 flavonoids, 51 saponins, and 36 other compounds, of which contained six pairs of isomers, were tentatively identified and characterized via reference standards and by comparing mass spectrometry data with literature. After oral administration of 15 g/kg Qi-Jing-Sheng-Bai, a number of 42 compounds including 24 prototype compounds and 18 metabolites have been detected in the serum of rats. This work serves as the first reference for Qi-Jing-Sheng-Bai chemical components and metabolites. Moreover, it provided a rapid and valid analytical strategy for characterization of the chemical compounds and metabolites of traditional Chinese medicine formula.
Collapse
Affiliation(s)
- Ran Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shan Lin
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xisong Ke
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Qu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhui Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopo Qi
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|