1
|
Rojas Cabrera JM, Oesterle TS, Rusheen AE, Goyal A, Scheitler KM, Mandybur I, Blaha CD, Bennet KE, Heien ML, Jang DP, Lee KH, Oh Y, Shin H. Techniques for Measurement of Serotonin: Implications in Neuropsychiatric Disorders and Advances in Absolute Value Recording Methods. ACS Chem Neurosci 2023; 14:4264-4273. [PMID: 38019166 PMCID: PMC10739614 DOI: 10.1021/acschemneuro.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter in the peripheral, enteric, and central nervous systems (CNS). Within the CNS, serotonin is principally involved in mood regulation and reward-seeking behaviors. It is a critical regulator in CNS pathologies such as major depressive disorder, addiction, and schizophrenia. Consequently, in vivo serotonin measurements within the CNS have emerged as one of many promising approaches to investigating the pathogenesis, progression, and treatment of these and other neuropsychiatric conditions. These techniques vary in methods, ranging from analyte sampling with microdialysis to voltammetry. Provided this diversity in approach, inherent differences between techniques are inevitable. These include biosensor size, temporal/spatial resolution, and absolute value measurement capabilities, all of which must be considered to fit the prospective researcher's needs. In this review, we summarize currently available methods for the measurement of serotonin, including novel voltammetric absolute value measurement techniques. We also detail serotonin's role in various neuropsychiatric conditions, highlighting the role of phasic and tonic serotonergic neuronal firing within each where relevant. Lastly, we briefly review the present clinical application of these techniques and discuss the potential of a closed-loop monitoring and neuromodulation system utilizing deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Juan M. Rojas Cabrera
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Tyler S. Oesterle
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902, United States
- Robert
D. and Patricia K. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Aaron E. Rusheen
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Abhinav Goyal
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kristen M. Scheitler
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ian Mandybur
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kevin E. Bennet
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Dong Pyo Jang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| |
Collapse
|
2
|
Alzoman NZ, Darwish IA. Development of a Green Microwell Spectrofluorimetric Assay with High Analytical Throughput for the Determination of Selective Serotonin Reuptake Inhibitors in Pharmaceutical Dosage Forms and Plasma. Molecules 2023; 28:5221. [PMID: 37446883 DOI: 10.3390/molecules28135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, a new green microwell spectrofluorimetric assay (MW-SFA) with high throughput was developed and validated, for the first time, for the determination of three selective serotonin reuptake inhibitors (SSRIs) in pharmaceutical dosage forms and plasma. These SSRIs were fluoxetine (FLX), fluvoxamine (FXM), and paroxetine (PXT), which are commonly prescribed drugs for depression treatment. The MW-SFA is based on the condensation reaction of SSRIs with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in alkaline media to form highly fluorescent derivatives. The MW-SFA procedures were conducted in 96-microwell white opaque assay plates with a flat bottom and the fluorescence signals were measured using a microplate reader at their maximum excitation and emission wavelengths. The calibration curves were generated with good correlation coefficients (0.9992-0.9995) between the relative fluorescence intensity (RFI) and the SSRI concentrations in the range of 35-800 ng/mL. The limits of detection were in the range of 11-25 ng/mL, and the precision and accuracy were satisfactory. The proposed MW-SFA was successfully applied to the analysis of the SSRIs in their pharmaceutical dosage forms. The statistical analysis for the comparison between the MW-SFA assay results and those of pharmacopeial assays showed no significant differences between the assays in terms of their accuracy and precision. The application of the proposed MW-SFA was extended to successfully analyze SSRIs in plasma samples. The greenness of the assay was confirmed using three different metric tools. The assay was characterized with high throughput properties, enabling the sensitive simultaneous analysis of many samples in a short time. This assay is valuable for rapid routine applications in pharmaceutical quality control units and clinical laboratories for the determination of SSRIs.
Collapse
Affiliation(s)
- Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Darwish IA, Alzoman NZ. Development and Validation of Green and High-Throughput Microwell Spectrophotometric Assay for the Determination of Selective Serotonin Reuptake Inhibitors in Their Pharmaceutical Dosage Forms. Molecules 2023; 28:molecules28104221. [PMID: 37241961 DOI: 10.3390/molecules28104221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
This study describes the development and validation of a new green and high-throughput microwell spectrophotometric assay (MW-SPA) for the determination of three selective serotonin reuptake inhibitors (SSRIs) in their pharmaceutical dosage forms. These SSRIs are fluoxetine, fluvoxamine, and paroxetine, the most prescribed drugs for the treatment of depression. The proposed assay was based on the formation of orange-colored N-substituted naphthoquinone derivatives upon the reaction of SSRIs with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media. The assay was conducted in 96-microwell assay plates, and the absorbances of the reaction products were measured by a microplate reader at their maximum absorbance wavelengths. The optimum conditions of the reaction were refined and established. Under these conditions, calibration curves were generated, and linear regression equations were computed. The linear relations between the absorbances and drug concentrations were linear with good correlation coefficients (0.9992-0.9997) in the range of 2-80 µg/mL. The assay limits of detection were in the range of 1.5-4.2 µg/mL. The precision was satisfactory as the values of relative standard deviation did not exceed 1.70%. The accuracy of the assay was ≥98.2%. The proposed MW-SPA was successfully applied to the analysis of the SSRIs in their pharmaceutical dosage forms with acceptable accuracy and precision; the label claims were 99.2-100.5% (±0.96-1.35%). The results of the proposed MW-SPA were compared with those of the official/pre-validated assays by statistical analysis with respect to the accuracy (by t-test) and precision (by F-test). No significant differences were found between the calculated and theoretical values of the t- and F-tests at the 95% confidence level, proving similar accuracy and precision in the determination of SSRIs by both assays. The greenness of the proposed assay was confirmed by two metric tools. In addition, the assay is characterized with a high-throughput property which enables the simultaneous analysis of many samples in a short time. Therefore, the assay is a valuable tool for rapid routine application in pharmaceutical quality control units for the determination of the investigated SSRIs.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Kazemi F, Zamani HA, Abedi MR, Ebrahimi M. Synthesis and comparison of three photocatalysts for degrading tramadol as an analgesic and widely used drug in water samples. ENVIRONMENTAL RESEARCH 2023; 225:114821. [PMID: 36427639 DOI: 10.1016/j.envres.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Tramadol is an analgesic drug that is mainly excreted in the urine. The entry of Tramadol into water samples causes their biological contamination. Therefore, three catalysts such as bismuth ferrite, cobalt-doped bismuth ferrite, and a magnetized Keggin type of polyoxometalate (α-Fe2O3@phosphotungstic acid), were synthesized as photocatalysts to degrade Tramadol in water samples. The morphology and properties of the prepared photocatalysts were evaluated using several techniques. Effects of several factors, including tramadol concentration, pH, hydrogen peroxide concentration, and photocatalyst amount, were studied and optimized by a design experiment procedure based on Box-Behnken design for reducing the number of experiments and cost and investigating the interactions between factors in the photocatalytic degradation process of Tramadol. These factors were optimized for each prepared photocatalyst individually. Under the optimum conditions, the percentages of tramadol degradation and kinetics of the degradation process were evaluated in the presence of each photocatalyst. The tramadol degradation percentages using bismuth ferrite, cobalt-doped bismuth ferrite, and α-Fe2O3 @phosphotungstic acid were 81.10% for 120 min, 90.63% for 80 min, and 91.32% for 80 min, respectively. The rate constants of tramadol degradation were 0.0145, 0.0329, and 0.0312 min-1 for bismuth ferrite, cobalt-doped bismuth ferrite, and α-Fe2O3 @phosphotungstic acid, respectively. The results indicated the highest percentage of tramadol degradation and rate of the degradation process were obtained using α-Fe2O3 @phosphotungstic acid and cobalt-doped bismuth ferrite, respectively.
Collapse
Affiliation(s)
- Farshid Kazemi
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Reza Abedi
- Department of Applied Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Mahmoud Ebrahimi
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Erdem AS, Şimşek Kaya G, Kaya M, Altunay B, Alkan TY, Toru HS. Comparison of the effects of fluoxetine and venlafaxine on bone healing in a rat calvarial defect model. Injury 2023:S0020-1383(23)00290-5. [PMID: 37003871 DOI: 10.1016/j.injury.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine and the serotonin-norepinephrine reuptake inhibitor (SNRI) venlafaxine on bone defect healing. MATERIALS AND METHODS Wistar rats were randomly divided into three groups of eight animals each. The first received 0.1 ml/kg sterile saline solution, the second 5 mg/kg fluoxetine, and the third 5 mg/kg venlafaxine, daily by gastric gavage over 7 weeks. At week 3 of drug therapy, 5-mm diameter calvarial defects were created in the parietal bone of all of the animals. All rats were euthanized four weeks after surgery, micro-CT analysis and histomorphometric analysis were carried out to evaluate the following parameters: Bone volume fraction (BV/TV), bone surface (BS), bone surface density (BS/BV; bone surface/bone volume, 1/mm), trabecular number (Tb. N), trabecular thickness (Tb. Th), areas of new bone structure (positive areas), areas of mature bone structure (negative areas). RESULTS Micro-CT analysis showed the presence of similar levels of bone formation within the defect site in all three groups (p>0.05). Histomorphometric analysis revealed the presence of bone-forming cells at the defect periphery, with less activity indicating bone formation at the center. No statistically significant difference was observed between the groups (p>0.05). CONCLUSION Based on the findings of this study, it can be said that the use of both antidepressants hasn't any effect on bone defect healing.
Collapse
Affiliation(s)
- Arif Sermed Erdem
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Göksel Şimşek Kaya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Akdeniz University, Antalya, Turkey.
| | - Mahir Kaya
- Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Büşra Altunay
- Department of Pathology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Taha Yiğit Alkan
- Department of Computer Engineering, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, Turkey
| | - Havva Serap Toru
- Department of Pathology, School of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Olędzka I, Plenis A, Kowalski P, Bączek T, Roszkowska A. Analytical aspects of sample handling during the quantification of selective serotonin reuptake inhibitors in clinical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Fazli AA, Panigrahy BK, Kumar V, Raza SN, Zarger BA, Wani TU, Ahmad S, Khuroo A, Khan NA. Multiple-reaction monitoring (MRM) LC-MS/MS quantitation of venlafaxine and its O-desmethyl metabolite for a preclinical pharmacokinetic study in rabbits. Sci Rep 2022; 12:9322. [PMID: 35661132 PMCID: PMC9167309 DOI: 10.1038/s41598-022-13389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical pharmacokinetic (PK) studies in animal models during the formulation development phase give preliminary evidence and near clear picture of the PK behavior of drug and/or its dosage forms before clinical studies on humans and help in the tailoring of the dosage form according to the expected and requisite clinical behavior. The present work reports a first of its kind preclinical PK study on extended-release (ER) solid oral dosage forms of venlafaxine (VEN) in New Zealand White rabbits. The VEN is a highly prescribed and one of the safest and most effective therapeutic agents used in the treatment of different types of depression disorders worldwide. The multiple-reaction monitoring (MRM) LC–MS/MS method developed for this purpose demonstrated enough reliability in simultaneously quantitating VEN and its equipotent metabolite O-desmethylvenlafaxine (ODV) in rabbit plasma. The method described uses solid-phase extraction for sample preparation followed by an ultrafast LC–MS/MS analysis. The chromatographic separation was achieved isocratically with a predominantly polar mobile phase by employing RPLC. The triple quadrupole LC/MS/MS system operated in MRM mode used an ESI probe as an ion source in positive polarity. The validation results are within the permissible limits of US FDA recommendations and acceptance criteria for bioanalytical method validation.
Collapse
Affiliation(s)
- Abdul Aala Fazli
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | | | - Varinder Kumar
- Viatris Inc (Formulations Development Research), Jigani, Bangalore, 560105, India
| | - Syed Naiem Raza
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Bilal Ahmad Zarger
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Shavej Ahmad
- Sun Pharmaceuticals Industries Limited (R&D Center), Gurugram, Haryana, 122021, India
| | - Arshad Khuroo
- Sun Pharmaceuticals Industries Limited (R&D Center), Gurugram, Haryana, 122021, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
8
|
Roszkowska A, Plenis A, Kowalski P, Bączek T, Olędzka I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Eloisa Chávez-Castillo C, Sagahón-Azúa J, Itzel Velasco-Gloria K, Edith Medellín-Garibay S, Del Carmen Milán-Segovia R, Romano-Moreno S. Simultaneous determination of four serotonin selective reuptake inhibitors by an UPLC MS-MS method with clinical application in therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123183. [PMID: 35193100 DOI: 10.1016/j.jchromb.2022.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
An analytical method of ultra-high performance liquid chromatography coupled to tandem mass spectrometry detection was developed and validated for the simultaneous quantification in plasma of four selective serotonin reuptake inhibitor antidepressants: sertraline, escitalopram, paroxetine, fluoxetine, and its metabolite norfluoxetine. A simple protein precipitation was performed with acetonitrile containing 100 ng/mL of indomethacin, which was used as internal standard. Chromatographic separation was carried out on an Acquity BEH C18 column with isocratic elution of the mobile phase consisting of 5 mmol/L ammonium acetate with 0.1% formic acid (A) and acetonitrile (B) at a 60:40 proportion, respectively. The flow rate was 0.4 mL/min with a run time of 5 min. A positive electrospray ionization source was used for detection. The method was linear in a range of 5-800 ng/mL, with determination coefficients greater than 0.991. The accuracy ranged from 91% to 112% for intra-assay and from 89% to 112% for inter-assay. The variation coefficients ranged from 3.1% to 14.88% for intra-assay and from 3.60% to 14.74% for inter-assay precision. The method was successfully applied for the analysis of 73 samples from patients under treatment with these antidepressants; 36.9% of the samples had concentrations outside therapeutic ranges. This method can be applied for routine analysis in clinical practice, simplifying sample processing, reducing analysis time and consequently the costs associated with it.
Collapse
Affiliation(s)
| | - Julia Sagahón-Azúa
- Pharmacy Department, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, S.L.P, Mexico
| | - Karla Itzel Velasco-Gloria
- Pharmacy Department, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, S.L.P, Mexico
| | | | | | - Silvia Romano-Moreno
- Pharmacy Department, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, S.L.P, Mexico.
| |
Collapse
|
10
|
Hussien E, Rizk M, Daoud A, El-Eryan R. An Eco‐Friendly pencil graphite sensor for Voltammetric Analysis of the antidepressant Vilazodone Hydrochloride. ELECTROANAL 2022. [DOI: 10.1002/elan.202100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emad Hussien
- National Organization for Drug Control and Research EGYPT
| | | | - Amira Daoud
- National Organization for Drug Control and Research EGYPT
| | | |
Collapse
|
11
|
Chen L, Wang J, Xu T, Feng X, Huang C, Shen X. Recent sample pretreatment methods for determination of selective serotonin reuptake inhibitors (SSRIs) in biological samples. J Pharm Biomed Anal 2021; 206:114364. [PMID: 34543943 DOI: 10.1016/j.jpba.2021.114364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLU), sertraline (SER), paroxetine (PAR), fluvoxamine (FLV) and citalopram (CIT) have been the first treatment drugs for pregnant and breastfeeding women. Quantitative analysis of SSRIs in biological samples is extremely needed in public health and clinical practice. During the analysis, sample pretreatment is an important step that can obtain an accurate quantitative analysis of SSRIs in the complex samples. The present paper discussed the recent development of sample preparation methods for SSRI analysis. Traditional sample preparation techniques such as liquid liquid extraction (LLE) and solid phase extraction (SPE), which have been widely used in the separation of SSRIs in biological samples, were extensively presented. Moreover, the new sample preparation techniques including liquid phase microextraction (LPME), solid phase microextraction (SPME), electromembrane extraction (EME) and other miniaturized extraction techniques, which are becoming highly popular in SSRI analysis, were also critically reviewed. In this review, both the advantages and disadvantages of these sample pretreatment methods were addressed. As a summary, we prospected the challenges and promising directions for the future of sample pretreatment methods in SSRI analysis.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jincheng Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Tyllis Xu
- Shanghai American School, 258 Jinfeng Road, Minhang District, Shanghai 201107, China; Wuhan Egaotech Company Lmt., 9F, Building 3, Science and Technolge new energy Base, East Lake High-Tech District, Wuhan 430075, China
| | - Xinrui Feng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
12
|
Dindar ÇK, Erkmen C, Yıldırım S, Bozal-Palabiyik B, Uslu B. Interaction of citalopram and escitalopram with calf Thymus DNA: A spectrofluorometric, voltammetric, and liquid chromatographic approach. J Pharm Biomed Anal 2021; 195:113891. [PMID: 33422834 DOI: 10.1016/j.jpba.2021.113891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Citalopram (CIT) and its S-enantiomer, escitalopram (ESC), are antidepressants belonging to the class called selective serotonin reuptake inhibitors and have many different pharmacological and biological properties. Understanding the interaction mechanism of small drug molecules with DNA both helps in the development of new DNA-targeted drugs and provides more in-depth knowledge for controlling gene expression. In this study, the interaction of CIT and ESC with double-stranded calf thymus DNA (ct-dsDNA) was investigated for the first time. Spectrofluorometric, liquid chromatographic, and voltammetric response profiles of drugs and ct-dsDNA at different concentrations showed DNA-drug complex formation. Calculated binding constants were greater with all three techniques for ESC compared to CIT and were of the order of 103-104, which is in accordance with those of well-known groove binders. The results also showed the significant effect of chirality on complex formation. The thermodynamic parameters, including free energy change (ΔG < 0) and enthalpy change (ΔH < 0) obtained at different temperatures, indicated that complex formation was mainly driven by hydrogen bonding and van der Waals forces for both drugs. The results of this study may enhance the understanding of the interaction between CIT or ESC and ct-dsDNA and can be considered as the pioneer for future studies to uncover possible hidden phenotypes of these compounds.
Collapse
Affiliation(s)
- Çiğdem Kanbeş Dindar
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, 61080, Trabzon, Turkey
| | - Burcin Bozal-Palabiyik
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
13
|
Gniazdowska E, Korytowska N, Kłudka G, Giebułtowicz J. Determination of Antidepressants in Human Plasma by Modified Cloud-Point Extraction Coupled with Mass Spectrometry. Pharmaceuticals (Basel) 2020; 13:E458. [PMID: 33322843 PMCID: PMC7764124 DOI: 10.3390/ph13120458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Cloud-point extraction (CPE) is rarely combined with liquid chromatography coupled to mass spectrometry (LC-MS) in drug determination due to the matrix effect (ME). However, we have recently shown that ME is not a limiting factor in CPE. Low extraction efficiency may be improved by salt addition, but none of the salts used in CPE are suitable for LC-MS. It is the first time that the influences of a volatile salt-ammonium acetate (AA)-on the CPE extraction efficiency and ME have been studied. Our modification of CPE included also the use of ethanol instead of acetonitrile to reduce the sample viscosity and make the method more environmentally friendly. We developed and validated CPE-LC-MS for the simultaneous determination of 21 antidepressants in plasma that can be useful for clinical and forensic toxicology. The selected parameters included Triton X-114 concentration (1.5 and 6%, w/v), concentration of AA (0, 10, 20 and 30%, w/v), and pH (3.5, 6.8 and 10.2). The addition of 10% of AA increased recovery twice. For 20 and 30% (w/v) of AA, three phases were formed that prolonged the extraction process. The developed CPE method (6% Triton X-114, 10% AA, pH 10.2) was successfully validated through LC-MS/MS simultaneous determination of 21 antidepressants in human plasma. The linearity was in the range of 10-750 ng/mL (r2 > 0.990).
Collapse
Affiliation(s)
- Elżbieta Gniazdowska
- Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera, 01-793 Warsaw, Poland;
- Department of Bioanalysis and Drugs Analysis, Doctoral School, Medical University of Warsaw, 61 Żwirki i Wigury, 02-091 Warsaw, Poland
| | - Natalia Korytowska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (N.K.); (G.K.)
| | - Grzegorz Kłudka
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (N.K.); (G.K.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (N.K.); (G.K.)
| |
Collapse
|
14
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
15
|
Elgawish MS, Ali MA, Moustafa MA, Hafeez SM. Toxicity Profile, Pharmacokinetic, and Drug-Drug Interaction Study of Citalopram and Sertraline Following Oral Delivery in Rat: An LC-MS/MS Method for the Simultaneous Determination in Plasma. Chem Res Toxicol 2020; 33:2584-2592. [PMID: 32957789 DOI: 10.1021/acs.chemrestox.0c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The burden of depression and other mental disorders is on the rise globally, and successful treatment sometimes requires modifications of drugs and/or dose regimens. The development of novel analytical methods for the determination of antidepressant drugs in biological fluids is thus urgently required. Herein, a sensitive, robust, and rapid liquid chromatographic coupled tandem mass spectrometric method was developed and validated for the determination of citalopram (CIT) and sertraline (SER) in rat plasma after oral administration. The analytes of interest and internal standard (duloxetine (DUL)) were extracted from 100 μL of plasma with solid-phase extraction on an Oasis HLB cartridge followed by the separation with gradient elution with water containing 0.1% formic acid and acetonitrile on an Agilent Eclipse Plus ODS (4.6 × 100 mm, 3.5 μm) column at flow rate 0.2 mL min-1. The triple quadrupole mass spectrometry was applied via electrospray ionization source for detection. The fragmentation pattern of the protonated CIT, SER, and DUL was elucidated using multiple reaction monitoring of the transitions of m/z 325.2 to 109, 306.1 to 158.9, and 298.1 to 154.1 as [M + H]+ for CIT, SER, and DUL, respectively. The proposed method has been validated as per US-FDA bioanalytical guidelines in terms of linearity, accuracy, precision, matrix effects, stability, selectivity, and recovery. The method was linear over the concentration range of 1-2000 and 1-1000 ng mL-1 with the lower limit of detection of 0.12 and 0.19 ng mL-1 for CIT and SER, respectively. The interday and intraday precisions and accuracy expressed by the relative standard deviation and the relative standard error were both lower than 11.1% and 2.1%, respectively. The proposed method was successfully applied for the pharmacokinetics and drug monitoring studies of CIT and SER in rat plasma after a single oral dose of 120 mg kg-1 of CIT and SER. Coadministration of SER with CIT has affected the peak plasma concentrations, maximum plasma concentration time, area under the concentration-time curve, and oral clearance of CIT. Molecular modeling study showed that SER could competitively inhibit CYP2D6, the main enzyme involved in CIT metabolism. A possible drug-drug interaction in psychiatric patients undergoing chronic SER and CIT treatment is therefore worthy of more attention in an effort to avoid side effects and serotonin syndrome.
Collapse
Affiliation(s)
- Mohamed Saleh Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.,Center for Molecular Spectroscopy and Dynamic, Institute for Basic Science, Korea University, Seoul 02841, Republic of South Korea
| | - Mohamed A Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr 11829, Egypt
| | - Moftah A Moustafa
- Chemistry Department, Faculty of Science, Tobruk University, Tobruk, Libya
| | - Sameh M Hafeez
- Chemical Laboratory, Forensic Medicine Authority, Justice Ministry, Cairo, Egypt
| |
Collapse
|