1
|
Zeng Y, Zhao L, Hao M, Maimaiti M, Li Z, Zhang M, Ma X. Analysis of an Aqueous Extract from Turkish Galls Based on Multicomponent Qualitative and Quantitative Analysis Combined with Network Pharmacology and Chemometric Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:9962574. [PMID: 38817340 PMCID: PMC11139529 DOI: 10.1155/2024/9962574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
The current quality control method for Turkish gall (TG) is limited to assessing total tannin or gallic acid (GA), which offers a basic level of quality control but does not fully capture the true quality of TG. Therefore, it is essential to establish a comprehensive method that utilizes multiple indicators to assess the intrinsic quality of TG. This research utilized UPLC-Q-TOF-MS/MS technology to qualitatively analyze the chemical composition of TG. Subsequently, the potential main active ingredients, targets, and pathways of TG in treating recurrent aphthous ulcers (RAU) were explored and analyzed using network pharmacology technology. Quantitative analysis of multicomponents by single marker (QAMS) was then employed to quantify the primary pharmacodynamic components in TG. Finally, chemometrics analysis was utilized to interpret the measured results and identify the markers of scavenging quality. The study identified 36 chemical components in TG, highlighting ellagic acid (EA), GA, and so on as key components in treating RAU. A method for simultaneously determining GA, EA, 1,2,3,6-tetra-O-galloyl-β-D-glucose (TEGG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PEGG) in TG was established. Statistical analysis revealed significant differences in the content of these 4 components across 14 batches of TG, with GA and PEGG identified as the primary contributors to the variations. This study determined a quality index for TG, providing a reference for quality evaluation and introducing a cost-effective and efficient quality control method. Furthermore, it addressed the challenge of developing new Chinese medicine by overcoming the lack of reference substances.
Collapse
Affiliation(s)
- Ya Zeng
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Lu Zhao
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Meng Hao
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
| | - Mirzat Maimaiti
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
| | - Zhi Li
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
| | - Minghui Zhang
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
| | - Xuan Ma
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
- Xinjiang Key Laboratory of Generic Technology of Traditional Chinese Medicine (Ethnic Medicine) Pharmacy, Urumqi 830002, Xinjiang, China
| |
Collapse
|
2
|
Küpeli Akkol E, Kosar M, Baldemir A, Şeker Karatoprak G, Demirpolat E, Betul Yerer Aycan M, Süntar I, Ilgün S. The Wound-Healing Potential of the Endemic Plant Helianthemum canum (L.) Baumg: Preclinical Studies Supported with Phytochemical Profiling. Chem Biodivers 2023; 20:e202301529. [PMID: 37955210 DOI: 10.1002/cbdv.202301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
The study's objective is to clarify the probable mechanisms underlying the wound-healing properties of Helianthemum canum L. (Cistaceae), a traditional anti-inflammatory and wound-healing medicine. LC/MS-MS was used to perform phytochemical analyses on a 70 % methanol extract of the plant's aerial parts. In vivo, linear incision and circular excision models were used to evaluate the wound healing activity. For anti-inflammatory effect, in vivo acetic acid capillary permeability assay and in vitro Interleukin 1, Interleukin 6, and Interferon ɣ levels in LPS-induced FR skin fibroblast cell line were also evaluated. The extract significantly improved wound healing in experimental models, with tensile strength values of 27.8 % and a contraction value of 35.09 %. Histopathological examinations, hydroxyproline estimation, hyaluronidase, collagenase, and elastase enzyme inhibitory assays confirmed wound healing potential. Inflammatory cytokines were significantly inhibited in the LPS-induced FR cell line, with the highest effect seen on IL-6 (34.5±2.12 pg/mL). This study offered the first concrete proof that H. canum can be used to treat wounds by suggesting that the myricetin and quinic acid content identified by LCMS-MS analysis may be accountable for the effect of H. canum on wound contraction and hydroxyproline production.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, 06330, Etiler, Ankara, Turkiye
| | - Muberra Kosar
- Eastern Mediterranean University Faculty of Pharmacy, 99628, Famagusta, TRNC, Mersin-10, Turkiye
| | - Ayşe Baldemir
- Health Sciences University Gülhane Pharmacy Faculty Department of PharmaceuticalBotany, 06018, Ankara, Turkiye
| | - Gökçe Şeker Karatoprak
- Erciyes University Faculty of Pharmacy Department of Pharmacognosy, 38000, Kayseri, Turkiye
| | - Eren Demirpolat
- Erciyes University Faculty of Pharmacy Department of Pharmacology, 38000, Kayseri, Turkiye
| | | | - Ipek Süntar
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, 06330, Etiler, Ankara, Turkiye
| | - Selen Ilgün
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Botany, 38000, Kayseri, Turkiye
| |
Collapse
|
3
|
Alsharif B, Hante N, Govoni B, Verli H, Kukula-Koch W, Jose Santos-Martinez M, Boylan F. Capparis cartilaginea decne (capparaceae): isolation of flavonoids by high-speed countercurrent chromatography and their anti-inflammatory evaluation. Front Pharmacol 2023; 14:1285243. [PMID: 37927588 PMCID: PMC10620733 DOI: 10.3389/fphar.2023.1285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Capparis cartilaginea Decne. (CC) originates from the dry regions of Asia and the Mediterranean basin. In traditional medicine, tea of CC leaves is commonly used to treat inflammatory conditions such as rheumatism, arthritis, and gout. Due to the limited studies on the phytochemistry and biological activity of CC compared to other members of the Capparaceae family, this work aims to: 1) Identify the chemical composition of CC extract and 2) Investigate the potential anti-inflammatory effect of CC extract, tea and the isolated compounds. Methods: To guarantee aim 1, high-speed countercurrent chromatography (HSCC) method; Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESIQTOF-MS/MS) were employed for this purpose. To guarantee aim 2, we studied the effect of the isolated flavonoids on matrix metalloproteinases (MMPs) -9 and -2 in murine macrophages. Molecular docking was initially performed to assess the binding affinity of the isolated flavonoids to the active site of MMP-9. Results and discussion: In silico model was a powerful tool to predict the compounds that could strongly bind and inhibit MMPs. CC extract and tea have shown to possess a significant antioxidant and anti-inflammatory effect, which can partially explain their traditional medicinal use.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Bruna Govoni
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hugo Verli
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - María Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Determining the protective effects of Ma-Mu-Ran Antidiarrheal Capsules against acute DSS-induced enteritis using 16S rRNA gene sequencing and fecal metabolomics. Chin J Nat Med 2022; 20:364-377. [DOI: 10.1016/s1875-5364(22)60158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/20/2022]
|
5
|
Wei X, Luo C, He Y, Huang H, Ran F, Liao W, Tan P, Fan S, Cheng Y, Zhang D, Lin J, Han L. Hepatoprotective Effects of Different Extracts From Triphala Against CCl 4-Induced Acute Liver Injury in Mice. Front Pharmacol 2021; 12:664607. [PMID: 34290606 PMCID: PMC8287969 DOI: 10.3389/fphar.2021.664607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background:Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.
Collapse
Affiliation(s)
- Xichuan Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Yuan Cheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|