1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sun J, Zhang C, Su X, Zhou H, Zhou S, Jiang M, Fang B. Several first-line anti-hypertensives act on fibrosarcoma progression and PD1ab blockade therapy. J Orthop Surg Res 2024; 19:147. [PMID: 38373964 PMCID: PMC10875773 DOI: 10.1186/s13018-024-04627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
PURPOSE Patients are typically diagnosed with both hypertension and fibrosarcoma. Medical oncologists must prescribe suitable anti-hypertensive medications while considering anti-tumor drugs. Recently, immunotherapy has become prominent in cancer treatment. Nonetheless, it is unknown what role anti-hypertensive medications will play in immunotherapy. METHODS We examined the effects of six first-line anti-hypertensive medications on programmed cell death protein 1 antibody (PD1ab) in tumor treatment using a mouse model of subcutaneous fibrosarcoma. The drugs examined were verapamil, losartan, furosemide, spironolactone, captopril, and hydrochlorothiazide (HCTZ). The infiltration of CD8+ T cells was examined by immunohistochemistry. Additionally, several in vitro and in vivo assays were used to study the effects of HCTZ on human fibrosarcoma cancer cells to explore its mechanism. RESULTS Verapamil suppressed tumor growth and showed an improved effect on the tumor inhibition of PD1ab. Captopril did not affect tumor growth but brought an unexpected benefit to PD1ab treatment. In contrast, spironolactone and furosemide showed no effect on tumor growth but had an offset effect on the PD1ab therapy. Consequently, the survival time of mice was also significantly reduced. Notably, losartan and HCTZ, especially HCTZ, promoted tumor growth and weakened the effect of PD1ab treatment. Consistent results were observed in vivo and in vitro using the human fibrosarcoma cell line HT1080. We determined that the Solute Carrier Family 12 Member 3 (SLC12A3), a known target of HCTZ, may be the principal factor underlying its effect-enhancing properties through mechanism studies employing The Cancer Genome Atlas (TCGA) data and in vivo and in vitro assays. CONCLUSION Verapamil and captopril potentiated the anti-tumor effect of PD1ab, whereas spironolactone and furosemide weakened the effect of PD1ab on tumor inhibition. Alarmingly, losartan and HCTZ promoted tumor growth and impaired the effect of PD1ab. Furthermore, we preliminarily found that HCTZ may promote tumor progression through SLC12A3. Based on this study, futher mechanism researches and clinical trials should be conducted in the future.
Collapse
Affiliation(s)
- Jianwen Sun
- Department of Orthopaedics, The First Affiliated Hospital of Jishou University, The People's Hospital of Xiangxi Autonomous Prefecture, Jishou, China
| | | | - Xinhao Su
- Department of Jishou University, Jishou, China
| | - Haoyun Zhou
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Siyun Zhou
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Minjie Jiang
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Zhejiang, China.
| |
Collapse
|
3
|
Liang SY, Xiao HK. The antihypertensive felodipine shows synergistic activity with immune checkpoint blockade and inhibits tumor growth via NFAT1 in LUSC. Open Med (Wars) 2023; 18:20230801. [PMID: 37750075 PMCID: PMC10518203 DOI: 10.1515/med-2023-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
This study aimed to explore the role and mechanism of felodipine in lung cancer therapy. Murine subcutaneous lung squamous cancer (LUSC) models constructed by KLN-205 cells were utilized to assess the effect of felodipine monotherapy and in combination with the programmed cell death protein 1 antibody (PD1ab) and cytotoxic T lymphocyte-associated antigen-4 (CTLA4ab). Immunohistochemistry analysis was subsequently applied to detect the number of CD8+ T cells and Ki67+ cells. Lastly, a series of in vitro and in vivo experiments were performed to evaluate the effects of felodipine on human LUSC cells and explore the preliminary mechanism underlying felodipine inhibition. The results revealed that felodipine monotherapy exerted a significant inhibitory effect on LUSC growth and synergistic antitumoral activity with PD1ab and CTLA4ab. Meanwhile, immunohistochemistry analysis displayed that felodipine promoted CD8+ T-cell infiltration and downregulated Ki67 expression in tumor cells. Moreover, in vitro and in vivo experiments utilizing human LUSC cells determined that felodipine impaired the proliferative and migratory abilities of cancer cells. In addition, TCGA data analysis uncovered that nuclear factor of activated T cell (NFAT1) expression was positively correlated with overall survival and disease-free survival. Finally, the cell counting kit-8 assay signaled that felodipine might suppress tumor growth by modulating NFAT1.
Collapse
Affiliation(s)
- Si-Yu Liang
- Department of Cardiology, The Fourth Affiliated Hospital of Guangzhou Medical University, Zengcheng, Guangzhou, China
| | - Hong-Kai Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Guangzhou Medical University, Zengcheng, Guangzhou, China
| |
Collapse
|
4
|
Liao YQ, Fang BB, Wu QX, Dong WY, Deng GM. Verapamil modulates NFAT2 to inhibit tumor growth and potentiates PD1ab immune checkpoint inhibitor therapy in cervical cancer treatment. J Recept Signal Transduct Res 2023; 43:93-101. [PMID: 38070127 DOI: 10.1080/10799893.2023.2291562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE Current evidence suggests a high co-prevalence of hypertension and cervical cancer. Accordingly, blood pressure control is indicated during anti-tumor drug therapy in this patient population. Over the past few years, immunotherapy has made great strides in treating different cancers. However, the role and clinical significance of verapamil as a first-line anti-hypertensive drug during immunotherapy remain poorly understood, emphasizing the need for further studies. METHODS Murine cervical cancer models were employed to assess the effect of verapamil monotherapy and combination with PD1ab. Immunohistochemistry was conducted to quantify the abundance of CD8+ T cell and Ki67+ cells. Several in-vitro and in-vivo assays were used to study the effects of verapamil and explore the preliminary mechanism. RESULTS Monotherapy with verapamil or PD1ab immune checkpoint inhibitor significantly suppressed the growth of subcutaneously grafted U14 cells in WT BABL/c mice, respectively, with increased survival time of mice. Consistent results were observed in the melanoma model. Furthermore, we substantiated that verapamil significantly impaired tumor proliferation and migration of SiHa human cervical cancer cells in vitro and in vivo. In silico analysis using TCGA data revealed that NFAT2 expression negatively correlated with patient survival. The CCK8 assay revealed that verapamil abrogated the stimulatory effect of NFAT2 after knockdown of NFAT2. CONCLUSIONS Our results suggest that verapamil inhibits tumor growth by modulating NFAT2 expression and enhancing tumor immune responses to PD1ab, which can be harnessed for cervical cancer therapy, especially for patients with comorbid hypertension. Indeed, further clinical trials are warranted to increase the robustness of our findings.
Collapse
Affiliation(s)
- Yao-Qing Liao
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| | - Bin-Bo Fang
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Qing-Xia Wu
- The First People's Hospital of Shunde, Shunde Hospital of Southern Medical University, Foshan, China
| | - Wei-Ying Dong
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| | - Guan-Ming Deng
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| |
Collapse
|
5
|
Jovanović Stojanov S, Ntungwe EN, Dinić J, Podolski-Renić A, Pajović M, Rijo P, Pešić M. Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition. Pharmaceutics 2023; 15:1942. [PMID: 37514128 PMCID: PMC10385270 DOI: 10.3390/pharmaceutics15071942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodium-orthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein's functioning dependence on ATP production in mitochondria.
Collapse
Affiliation(s)
- Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Epole N Ntungwe
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
- Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Milica Pajović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Patrícia Rijo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
6
|
Ribeiro E, Costa B, Vasques-Nóvoa F, Vale N. In Vitro Drug Repurposing: Focus on Vasodilators. Cells 2023; 12:671. [PMID: 36831338 PMCID: PMC9954697 DOI: 10.3390/cells12040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Drug repurposing aims to identify new therapeutic uses for drugs that have already been approved for other conditions. This approach can save time and resources compared to traditional drug development, as the safety and efficacy of the repurposed drug have already been established. In the context of cancer, drug repurposing can lead to the discovery of new treatments that can target specific cancer cell lines and improve patient outcomes. Vasodilators are a class of drugs that have been shown to have the potential to influence various types of cancer. These medications work by relaxing the smooth muscle of blood vessels, increasing blood flow to tumors, and improving the delivery of chemotherapy drugs. Additionally, vasodilators have been found to have antiproliferative and proapoptotic effects on cancer cells, making them a promising target for drug repurposing. Research on vasodilators for cancer treatment has already shown promising results in preclinical and clinical studies. However, additionally research is needed to fully understand the mechanisms of action of vasodilators in cancer and determine the optimal dosing and combination therapy for patients. In this review, we aim to explore the molecular mechanisms of action of vasodilators in cancer cell lines and the current state of research on their repurposing as a treatment option. With the goal of minimizing the effort and resources required for traditional drug development, we hope to shed light on the potential of vasodilators as a viable therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Targeting the two-pore channel 2 in cancer progression and metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:62-89. [PMID: 36046356 PMCID: PMC9400767 DOI: 10.37349/etat.2022.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The importance of Ca2+ signaling, and particularly Ca2+ channels, in key events of cancer cell function such as proliferation, metastasis, autophagy and angiogenesis, has recently begun to be appreciated. Of particular note are two-pore channels (TPCs), a group of recently identified Ca2+-channels, located within the endolysosomal system. TPC2 has recently emerged as an intracellular ion channel of significant pathophysiological relevance, specifically in cancer, and interest in its role as an anti-cancer drug target has begun to be explored. Herein, an overview of the cancer-related functions of TPC2 and a discussion of its potential as a target for therapeutic intervention, including a summary of clinical trials examining the TPC2 inhibitors, naringenin, tetrandrine, and verapamil for the treatment of various cancers is provided.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Lisa F. Lincz
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia;Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| |
Collapse
|
8
|
Lu J, Li Y, Li YA, Wang L, Zeng AR, Ma XL, Qiang JW. In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 2022; 20:92. [PMID: 35168606 PMCID: PMC8845351 DOI: 10.1186/s12967-022-03292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. Methods Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. Results On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. Conclusions These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03292-z.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - An Rong Zeng
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Xiao Liang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|