1
|
Hu J, Chen P, Zhang L, Sun P, Huang Y, Liu X, Fan Q. A universal optical aptasensor for antibiotics determination based on a new high-efficiency Förster resonance energy transfer pair. Mikrochim Acta 2024; 191:561. [PMID: 39180707 DOI: 10.1007/s00604-024-06629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A novel "turn-on" aptasensor for kanamycin (Kana) detection based on a new Förster resonance energy transfer (FRET) pair is reported. A new organic small molecule was employed as a high-efficiency quencher for fluorophore. Based on specific interactions between ssDNA and the quencher, an ingenious and amplified strategy was designed. In the absence of the target, the fluorescence of the fluorophore labeled at the end of the aptamer was quenched. After the binding of the aptamer to the target, the fluorescence was recovered and amplified. The proposed aptasensor showed high specificity, selectivity, and stability in complicated systems. With the P3-based strategy, the limit of detection for Kana is estimated to be 10 nM, which is much lower than the maximum allowable concentration in milk. The recoveries of spiked Kana in milk were in the range 99.8 ~ 105.3% (n = 3). Fortunately, this novel method can be easily extended to other antibiotics such as tobramycin by simply replacing the aptamer, showing great potential as a universal platform for selective, sensitive, and rapid detection of hazardous analytes in food samples.
Collapse
Affiliation(s)
- Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Chen
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
2
|
Dalla Zuanna P, Curci D, Lucafò M, Addobbati R, Fabretto A, Stocco G. Preanalytical Stability of 13 Antibiotics in Biological Samples: A Crucial Factor for Therapeutic Drug Monitoring. Antibiotics (Basel) 2024; 13:675. [PMID: 39061358 PMCID: PMC11274111 DOI: 10.3390/antibiotics13070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The stability of antibiotic preanalytical samples is a critical factor in therapeutic drug monitoring (TDM), a practice of undoubted importance for the proper therapeutic use of antibiotics, especially in complex management patients, such as pediatrics. This review aims to analyze the data in the literature regarding the preanalytical stability of some of the antibiotics for which TDM is most frequently requested. The literature regarding the preanalytical stability of amikacin, ampicillin, cefepime, ceftazidime, ciprofloxacin, daptomycin, gentamicin, levofloxacin, linezolid, meropenem, piperacillin, teicoplanin, and vancomycin in plasma, serum, whole blood, and dried blood/plasma spot samples was analyzed. Various storage temperatures (room temperature, 4 °C, -20 °C, and -80 °C) and various storage times (from 1 h up to 12 months) as well as subjecting to multiple freeze-thaw cycles were considered. The collected data showed that the non-beta-lactam antibiotics analyzed were generally stable under the normal storage conditions used in analytical laboratories. Beta-lactam antibiotics have more pronounced instability, particularly meropenem, piperacillin, cefepime, and ceftazidime. For this class of antibiotics, we suggest that storage at room temperature should be limited to a maximum of 4 h, storage at 2-8 °C should be limited to a maximum of 24 h, and storage at -20 °C should be limited to a maximum of 7 days; while, for longer storage, freezing at -80 °C is suggested.
Collapse
Affiliation(s)
- Paolo Dalla Zuanna
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Debora Curci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Marianna Lucafò
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
| | - Riccardo Addobbati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Antonella Fabretto
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Gabriele Stocco
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
3
|
Lv J, Wu Q, Li S, Yi H, Xie F. Development and validation of a UPLC-PDA method for quantifying ceftazidime in dried blood spots. J Pharm Biomed Anal 2024; 239:115928. [PMID: 38134705 DOI: 10.1016/j.jpba.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Bacterial infection is a leading cause of neonatal death. Ceftazidime, commonly used for neonatal infections, is often used off-label. Blood sampling limits pharmacokinetic (PK) studies in neonatal patients. The dried blood spots (DBS) are a potential matrix for microsampling. Herein, we describe an ultra-performance liquid chromatography with a photodiode array (UPLC-PDA) to determine ceftazidime in DBS from neonatal patients in support of pharmacokinetic studies. The Capitainer® device-based DBS samples containing 10 µL blood were extracted in 70% methanol/water (v/v) with acetaminophen as the internal standard (IS). The extraction process was carried out at 20 °C using a block bath shaker at 1000 rpm for 30 min. The extracted ceftazidime was subsequently eluted through an Acquity UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm). Elution was achieved using a water (containing 0.1% trifluoroacetic acid)/acetonitrile linear gradient at a flow rate of 0.5 mL/min, and the analytical time was 3.2 min. The PDA detection wavelength was set at 259 nm. The method underwent thorough validation following the recommendation of the European Bioanalysis Forum (EBF) and the bioanalytical guideline established by the European Medicines Agency (EMA). No interfering peaks were detected at the retention times of ceftazidime and IS. The ceftazidime exhibited a quantification range spanning from 0.5 to 200 µg/mL, and the assay demonstrated good accuracy (intra/inter-assay ranging from 90.1% to 104.8%) and precision (intra/inter-assay coefficient of variations ranging from 4.8% to 11.7%). The method's applicability was demonstrated by analyzing clinical DBS samples collected from neonatal patients.
Collapse
Affiliation(s)
- Jianmei Lv
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qiping Wu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hanxi Yi
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Ramadan O, Schatz LM, van den Heuvel I, Masjosthusmann K, Groll AH, Hempel G. Developing a Method for Quantifying Meropenem in Children-Volumetric Adsorptive Microsampling Versus Plasma Sampling. Ther Drug Monit 2023; 45:623-630. [PMID: 37199434 DOI: 10.1097/ftd.0000000000001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/12/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Meropenem is a carbapenem antibiotic often used in pediatric intensive care units due to its broad spectrum of activity. Therapeutic drug monitoring (TDM) is a useful tool to increase the effectiveness of meropenem by adjusting the dose based on plasma levels; however, the relatively large sample volume required for TDM can limit its use in children. Therefore, this study aimed to determine meropenem concentrations and consequently perform TDM effectively using the smallest possible sample volume. Volumetric absorptive microsampling (VAMS) is a sampling technology developed to collect a small, precise volume of blood. For the applicability of VAMS in TDM, plasma concentrations must be reliably calculated from whole blood (WB) collected by VAMS. METHODS VAMS technology using 10 µL of WB was evaluated and compared with EDTA-plasma sampling. High-performance liquid chromatography with UV detection was applied to quantify meropenem in VAMS and plasma samples after the removal of proteins by precipitation. Ertapenem was used as the internal standard. Samples were collected simultaneously from critically ill children receiving meropenem using VAMS and traditional sampling. RESULTS It was found that no consistent factor could be determined to calculate meropenem plasma concentrations from the WB, indicating that VAMS was not reliable in the TDM of meropenem. Therefore, to reduce the required sample amount in pediatric patients, a method for quantifying meropenem from 50 µL of plasma with a lower limit of quantification of 1 mg/L was developed and successfully validated. CONCLUSIONS A simple, reliable, and low-cost method was established using high-performance liquid chromatography-UV to determine the concentration of meropenem in 50 µL of plasma. VAMS using WB does not seem to be suitable for TDM of meropenem.
Collapse
Affiliation(s)
- Ola Ramadan
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Ingeborg van den Heuvel
- Department of General Paediatrics, University Children's Hospital Münster, Münster, Germany; and
| | - Katja Masjosthusmann
- Department of General Paediatrics, University Children's Hospital Münster, Münster, Germany; and
| | - Andreas H Groll
- Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Chernomorova MA, Myakinina MS, Zhinzhilo VA, Uflyand IE. Analytical Determination of Cephalosporin Antibiotics Using Coordination Polymer Based on Cobalt Terephthalate as a Sorbent. Polymers (Basel) 2023; 15:polym15030548. [PMID: 36771849 PMCID: PMC9919266 DOI: 10.3390/polym15030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this work, a coordination polymer based on cobalt terephthalate was obtained and characterized by elemental analysis, infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The coordination polymer was tested as a sorbent for the solid-phase extraction of cephalosporin antibiotics, including ceftriaxone, cefotaxime, and cefazolin, from aqueous solutions. The coordination polymer had a high adsorption capacity (520.0 mg/g). Antibiotics adsorption followed pseudo-second order kinetic model and the Freundlich isotherm model. The calculated thermodynamic parameters indicate a spontaneous process. The resulting coordination polymer has good stability and reusability. The possibility of separating the studied cephalosporins on a chromatographic column filled with a coordination polymer was shown. This work opens great prospects for the development and application of a coordination polymer based on cobalt terephthalate for the removal of cephalosporins from ambient water.
Collapse
|
6
|
Methods for Determination of Meropenem Concentration in Biological Samples. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Measuring the concentration of antibiotics in biological samples allow implementation of therapeutic monitoring of these drugs and contribute to the adjustment of the dosing regimen in patients. This increases the effectiveness of antimicrobial therapy, reduces the toxicity of these drugs and prevents the development of bacterial resistance. This review article summarizes current knowledge on methods for determining concentration of meropenem, an antibiotic drug from the group of carbapenems, in different biological samples. It provides a brief discussion of the chemical structure, physicochemical and pharmacokinetic properties of meropenem, different sample preparation techniques, use of apparatus and equipment, knowledge of the advantages and limitations of available methods, as well as directions in which new methods should be developed. This review should facilitate clinical laboratories to select and apply one of the established methods for measuring of meropenem, as well as to provide them with the necessary knowledge to develop new methods for quantification of meropenem in biological samples according to their needs.
Collapse
|
7
|
Caro Y, Van Strate P, Sartorio M, Cámara M, De Zan M. Application of the lifecycle approach to the development and validation of a chromatographic method for therapeutic drug monitoring of ceftazidime, meropenem, and piperacillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|