1
|
Li H, Wang Z, Zhao G, Wang Y, Xu X, Wang Y, Zhang Z, Wang G. Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals (Basel) 2024; 17:1301. [PMID: 39458942 PMCID: PMC11509884 DOI: 10.3390/ph17101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background:Asarum heterotropoides and Asarum sieboldii are commonly used in traditional Chinese medicine. However, little is known about how they differ in terms of essential oil (EO) and ethanol extract (EE) content and composition. Moreover, the effect of various geographical locations on the essential oil (EO), ethanol extract (EE), and asarinin content of different Asarum samples remains unknown. We tested four root-drying methods, i.e., soil removal and shade drying (P1), water washing and shade drying (P2), and water washing and drying at 30 °C (P3) and 40 °C (P4). We used LC-MS and GC-MS to investigate these differences. We also investigated the pharmacodynamic effects of EO and EE. Results: Overall, the EO, EE and asarinin contents of the analysed samples were 19.21-51.53 μL.g-1, 20.00-45.00 μL.g-1, and 1.268-2.591 mg.g-1, respectively. P1 treatment yielded the lowest volatile oil content compared to the other three treatments. GC-MS analysis revealed 78 EO components. Among the six major EO components, eucarvone, 3,5-dimethoxytoluene, and methyl eugenol were higher in A. heterotropoides than in A. sieboldii. However, the latter had a higher myristicin content. LC-MS analysis identified 888 EE components in roots and leaves of A. heterotropoides and A. sieboldii; 317 differentially accumulated metabolites were identified. EO and EE showed a dose-dependent reduction in the degree of swelling and an increase in the inhibition rate of drug concentration on acetic acid writhing in mice. Asarum EO proved to be more effective than EE in the pharmacodynamic study. Conclusions: We conclude that Asarum species show inter- and intra-specific differences in EO and EE content and composition, which may influence the pharmacodynamics of Asarum root extracts.
Collapse
Affiliation(s)
- Huiling Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Zhiqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guangyuan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Yanhong Wang
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Xuanwei Xu
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Yingping Wang
- State & Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ze Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guanghui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| |
Collapse
|
2
|
Lee E, Nam JO. Anti-Obesity and Anti-Diabetic Effects of Ostericum koreanum (Ganghwal) Extract. Int J Mol Sci 2024; 25:4908. [PMID: 38732125 PMCID: PMC11084156 DOI: 10.3390/ijms25094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Zhao M, Wen Y, Yang Y, Pan H, Xie S, Shen C, Liao W, Chen N, Zheng Q, Zhang G, Li Y, Gong D, Tang J, Zhao Z, Zeng J. (-)-Asarinin alleviates gastric precancerous lesions by promoting mitochondrial ROS accumulation and inhibiting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155348. [PMID: 38335913 DOI: 10.1016/j.phymed.2024.155348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.
Collapse
Affiliation(s)
- Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shunkai Xie
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caifei Shen
- Department of Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Nianzhi Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Yuchen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
4
|
Yu Q, Cai XS, Leveneur S, Wang XD, Liu HM, Zhang CX, Ma YX. Kinetic modeling of the sesamin conversion into asarinin in the presence of citric acid loading on Hβ. Front Nutr 2022; 9:983843. [PMID: 36034908 PMCID: PMC9399800 DOI: 10.3389/fnut.2022.983843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work, effects of reaction temperature, reactant concentration, catalyst loading, and rotation speed on the kinetics of sesamin conversion in a sesame oil system were studied by using citric acid loading on Hβ zeolite (CA/Hβ) as a catalyst. A kinetic model was built for sesamin conversion. The kinetic model fits correctly the experimental concentration of sesamin and asarinin (RSesamin2 = 0.93 and RAsarinin2 = 0.97). The sesamin conversion is an endothermic reaction (△HrIso = 3 4.578kJ/mol). The CA/Hβ catalyst could be easily regenerated by calcination, and there was no obvious loss of catalytic activity when reused. Knowledge of the sesamin conversion is of great significance for guiding production and improving the value and nutrition of sesame oil. In a word, this study lays the foundation for the scale-up of the production of asarinin from sesame oil using CA/Hβ as the catalyst.
Collapse
Affiliation(s)
- Qiong Yu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiao-Shuang Cai
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | | | - Xue-de Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Yu Q, Wang XD, Liu HM, Ma YX. Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil. Foods 2022; 11:foods11091225. [PMID: 35563949 PMCID: PMC9102778 DOI: 10.3390/foods11091225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Asarinin, an isomer of sesamin, has attracted attention because it has stronger biological properties than sesamin. The research on the conversion of sesamin into asarinin is limited. In this study, solid acid catalysts were screened and applied to promote the conversion of sesamin into asarinin in sesame oil. The results showed that citric acid loaded on zeolite beta (CTAH) was the optimal catalyst for asarinin production among the prepared catalysts. Characterization showed that CTAH had the greatest pore volume, largest surface area and strongest acid content. Response surface methodology (RSM) was applied to optimize the reaction conditions for asarinin yield using CTAH. The optimal reaction conditions were as follows: temperature, 85 °C; time, 2.7 h; catalyst amount, 1.6%. The predicted and experimental values of asarinin yield were 50.79 and 51.80 mg/100 g, respectively. The peroxide value and color in sesame oil samples treated with CTAH were clearly improved. In short, CTAH is a solid acid catalyst with potential application in the industrial conversion of sesamin into asarinin and in the improvement of sesame oil.
Collapse
Affiliation(s)
| | - Xue-De Wang
- Correspondence: or ; Tel.: +86-037-167-758-025
| | | | | |
Collapse
|
6
|
He H, Yang T, Li F, Zhang L, Ling X. A novel study on the immunomodulatory effect of umbilical cord derived mesenchymal stem cells pretreated with traditional Chinese medicine Asarinin. Int Immunopharmacol 2021; 100:108054. [PMID: 34492537 DOI: 10.1016/j.intimp.2021.108054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains the key for the treatment of malignant hematological diseases, and acute graft-versus-host disease (aGVHD) that might occur after allogenic transplantation can be life threatening and promote disease recurrence. GVHD damages the various parts of the body by upregulating T helper 1 cytokines (Th1) cytokines and stimulating CD4、CD8 + T cells. GVHD can exhibit significant immunoregulatory effects, but could be easily affected by the mesenchymal stem cells (MSC) environment, and hence the MSC immunosuppressive effects on GVHD remain unpredictable. Hence, to better understand the role of MSC in the prevention and treatment of GVHD, umbilical cord derived mesenchymal stem cells (UC-MSC) were pre-treated with Chinese medicine Asarinin and IFN-γ. In the mix lymphocyte reaction, we found that Asarinin pre-treated UC-MSC can exert significantly greater inhibition towards the proliferation of CD4 and CD8 + T cells, down-regulate Th1 type cytokines, up-regulate Th2 type cytokines, and reduce the inflammatory damage to liver, lung and intestine of aGVHD mice model. Moreover, Asarinin can cooperate with IFN-γto promote UC-MSC to secrete indoleamine 2,3-dioxygenase (IDO). Our findings establish that Asarinin pre-treated UC-MSC can significantly promote the immunosuppressive effects of MSC on aGVHD after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Haiping He
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China.
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China
| | - Fan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Lihua Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Xiaosui Ling
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Jeong SH, Jang JH, Jung DH, Lee GY, Lee YB. Pharmacokinetic Changes According to Single or Multiple Oral Administrations of Socheongryong-Tang to Rats: Presented as a Typical Example of Changes in the Pharmacokinetics Following Multiple Exposures to Herbal Medicines. Pharmaceutics 2021; 13:478. [PMID: 33916059 PMCID: PMC8103508 DOI: 10.3390/pharmaceutics13040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the pharmacokinetic properties of ephedrine, paeoniflorin, and cinnamic acid after single or multiple doses of Socheongryong-tang (SCRT) were administered to rats, and to present an example of the pharmacokinetic changes following multiple doses of an herbal medicine. SCRT is a traditional herbal medicine that has been used clinically for a long time, and its main ingredients include ephedrine, paeoniflorin, and cinnamic acid. However, studies on the pharmacokinetic properties of SCRT are insufficient, and particularly, no pharmacokinetic information has been reported for multiple doses. In this study, SCRT was administered orally to rats once or multiple times, and plasma sampled at different times was quantitatively analyzed for ephedrine, paeoniflorin, and cinnamic acid using ultra-high-performance liquid chromatography-tandem mass spectrometry. There was a difference between the pharmacokinetic parameter values of each component (especially in paeoniflorin and cinnamic acid) obtained after single or multiple doses of SCRT. The actual observed values of each component obtained after multiple doses of SCRT were clearly different from the predicted results of multiple-dose simulations based on the pharmacokinetic profiles obtained after a single dose. The results confirmed that the plasma concentrations and, thus, exposures to paeoniflorin and cinnamic acid were significantly increased when SCRT was administered multiple times, whereas that of ephedrine was not. The results of this study are expected to provide useful pharmacokinetic data for the safety and efficacy evaluation of SCRT in the future and demonstrate the necessity of pharmacokinetic comparison studies according to single or multiple oral administrations of herbal medicines.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
| | - Da-Hwa Jung
- Department of Korean Medicinal Resource Development, National Institute for Korean Medicine Development, Udae land gil 288, Jangheung, Jeollanamdo 59338, Korea; (D.-H.J.); (G.-Y.L.)
| | - Guk-Yeo Lee
- Department of Korean Medicinal Resource Development, National Institute for Korean Medicine Development, Udae land gil 288, Jangheung, Jeollanamdo 59338, Korea; (D.-H.J.); (G.-Y.L.)
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
| |
Collapse
|