1
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Vadagam N, Haridasyam SB, Venkatanarayana M, Lakka NS, Chinnakadoori SR. Separation and simultaneous estimation of enantiomers and Diastereomers of muscarinic receptor antagonist Solifenacin using stability-indicating Normal-phase HPLC technique with chiral stationary phase amylose tris-(3,5-dimethylphenylcarbamate). Chirality 2024; 36:e23632. [PMID: 37994273 DOI: 10.1002/chir.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
The R,S-enantiomer impurity and diastereomer impurities (S,S-isomer and R,R-isomer) of the solifenacin (S,R-enantiomer) were effectively separated and quantified simultaneously utilizing normal-phase high-performance liquid chromatography with a chiral stationary phase consisting of amylose tris (3,5-dimethylphenylcarbamate) coated on silica-gel (Chiralpak, AD-H). The enantiomeric and stereo-selective separation was achieved within a run time of 35 minutes using a mobile phase of 'n-hexane, ethanol, and diethylamine' in an isocratic elution mode with a detection wavelength of 220 nm. The validation attributes assessed were accuracy (which showed excellent recoveries between 97.5% and 100.4%) and linearity (which was proven in the range of 0.081-1.275 μg.mL-1 , with a linear regression of 0.999). The stress testing experiments proved that the developed methodology by the HPLC technique has stability-indicating characteristics, as all closely eluting peak pairs were separated well with a resolution of 2.3 and without any interference. The proposed methodology was highly efficient in separating and simultaneously determining the chiral impurities (enantiomers and diastereomers) of the solifenacin in the release and stability sample analyses of drug substances and tablets in pharmaceutical formulations.
Collapse
Affiliation(s)
- Niroja Vadagam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Muvvala Venkatanarayana
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Narasimha S Lakka
- Research & Development and Quality Operations, InvaHealth Inc., Cranbury, New Jersey, USA
| | | |
Collapse
|
3
|
Vadagam N, Haridasyam SB, Venkatanarayana M, Lakka NS, Chinnakadoori SR. Separation and quantitative estimation of stereo-selective enantiomers of montelukast in pharmaceutical drug substance and tablets dosage forms by using stability-indicating normal phase-HPLC method. Chirality 2023; 35:952-965. [PMID: 37461225 DOI: 10.1002/chir.23610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 11/17/2023]
Abstract
Montelukast sodium (MLS) is a leukotriene receptor antagonist that relieves asthma, bronchospasm, allergic rhinitis, and urticaria. A simple, robust, and stability-indicating normal phase high-performance liquid chromatography method was developed to separate and quantitatively estimate the S-enantiomer of MLS. The chiral separation was achieved using USP L51 packing material along with a mobile phase consisting of a solvent mixture (n-hexane, ethanol, and propionic acid), a flow rate of 1.0 mL/min, a detection wavelength of 284 nm, a column temperature of 30°C and an injection volume of 20 μL. The enantiomers peaks were well separated from the peaks of the placebo, diluting solvent, MLS, and its known impurities with a resolution of more than 2.2 and with no interference. Accuracy and linearity were studied in a range of 0.36-3.597 μg/mL (0.03%-0.30%), with good recoveries between 92.5% and 96.8% and a linear regression coefficient above 0.996. The suggested chiral chromatography method is being considered as an alternative and equivalent method to the United States Pharmacopeia and European Pharmacopeia monographs. The developed method was effectively employed for the study of release and stability samples of MLS. This HPLC method is also capable of separating and estimating the stereo-selective isomers (R- and S-enantiomers) of sulfoxide impurity of MLS in pharmaceutical medicine.
Collapse
Affiliation(s)
- Niroja Vadagam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Muvvala Venkatanarayana
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, Telangana, India
| | - Narasimha S Lakka
- Quality Operations and Research & Development, Invahealth Inc., Cranbury, New Jersey, USA
| | | |
Collapse
|
4
|
Vadagam N, Haridasyam SB, Venkatanarayana M. Stability-indicating normal-phase HPLC method development for separation and quantitative estimation of S-enantiomer of lacosamide in pharmaceutical drug substance and tablet dosage form. Biomed Chromatogr 2023; 37:e5688. [PMID: 37325866 DOI: 10.1002/bmc.5688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Lacosamide (LA) is an antiepileptic medicine that is used to treat tonic-clonic seizures, partial-onset seizures, mental problems, and pain. A simple, effective, and reliable normal-phase liquid chromatographic technique was developed and validated to separate and estimate the enantiomer of (S-enantiomer) LA in pharmaceutical drug substance and drug product. Normal-phase LC was performed using USP L40 packing material (250 × 4.6 mm, 5 μm) and a mobile phase of n-hexane and ethanol at 1.0 ml min-1 . The detection wavelength, column temperature, and injection volume used were 210 nm, 25°C, and 20 μl, respectively. The enantiomers (LA and S-enantiomer) were completely separated using a minimum resolution of 5.8 and accurately quantified without any interference in a 25-min run time. Accuracy study for stereoselective and enantiomeric purity trials was conducted between 10 and 200%, with recovery values ranging from 99.4 to 103.1% and linear regression values >0.997. The stability-indicating characteristics were assessed using forced degradation tests. The proposed normal-phase HPLC technique is an alternate approach to the official monograph methods (USP and Ph.Eur.) of LA, and it was successfully used in the evaluation of release and stability samples for both tablet dosage forms and pharmaceutical substances.
Collapse
Affiliation(s)
- Niroja Vadagam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, India
| | - Muvvala Venkatanarayana
- Department of Chemistry, GITAM School of Science (Deemed to be University), Hyderabad, India
| |
Collapse
|
5
|
Lakka NS, Kuppan C, Vadagam N, Reddamoni SY, Muthusamy C. Degradation pathways and impurity profiling of the anticancer drug apalutamide by HPLC and LC-MS/MS and separation of impurities using Design of Experiments. Biomed Chromatogr 2023; 37:e5549. [PMID: 36409057 DOI: 10.1002/bmc.5549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Apalutamide, an androgen receptor inhibitor, is used to treat prostate cancer. A stability-indicating high-performance liquid chromatography method was developed for the estimation of assay and organic impurities of apalutamide in drug substance and in tablet dosages using Design of Experiments. The chromatographic separation was achieved within 30 min using Atlantis dC18 , 100 × 4.6 mm, 3.0 μm and the binary gradient program (10 mm KH2 PO4 , pH 3.5; acetonitrile). The detection wavelength, flow rate, column temperature and injection volume used were 270 nm, 1.0 ml/min, 45°C and 10 μl, respectively. The interaction of independent variables (pH, column temperature and flow rate) and their influences on HPLC parameters were studied using a central composite design, and then the peak separation and elution behaviors between apalutamide and its seven impurities were determined. The method validation was performed for linearity, detection limit, quantitation limit, accuracy, precision and robustness as per the International Conference on Harmonization. A high-quality recovery with good precision (91.7-106.0%) and correlations (r2 > 0.997) within a linear range of 0.12-2.24 μg/ml (0.05-0.3%, w/w) were achieved consistently for assay and organic impurities of apalutamide. The stability-indicating characteristics of the proposed method were assessed through forced degradation and mass balance studies. An effort was made to figure out the chemical structures of newly formed degradation products (DP1-DP5) using LC-MS/MS.
Collapse
Affiliation(s)
- Narasimha Swamy Lakka
- Department of Chemistry, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Guntur (Dist.), Andhra Pradesh, India
| | - Chandrasekar Kuppan
- Department of Chemistry, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Guntur (Dist.), Andhra Pradesh, India
| | - Niroja Vadagam
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | | | - Chandru Muthusamy
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
6
|
Boppy NVVDP, Haridasyam SB, Vadagam N, Pasham M, Venkatanarayana M, Begum B. Stability-indicating liquid chromatography method development for assay and impurity profiling of amitriptyline hydrochloride in tablet dosage form and forced degradation study. Biomed Chromatogr 2022; 36:e5436. [PMID: 35766584 DOI: 10.1002/bmc.5436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Amitriptyline hydrochloride is an antidepressant drug with sedative effects used to treat the symptoms of anxiety, agitation with depression and schizophrenia with depression. A reversed-phase high-performance liquid chromatography method was developed to separate and quantitatively determine the assay and four organic impurities of amitriptyline in tablet dosage form and bulk drugs using a C18 column in an isocratic elution mode with mobile phase consisting of a mixture of pH 7.5 phosphate buffer and methanol. The pH conditions used in the chromatographic separation are discussed. The stability-indicating characteristics of the proposed method were proved using stress testing [5 m HCl at 80°C/1 h, 5 m NaOH at 80°C/1 h, H2 O (v/w) at 80°C/1 h, 6% H2 O2 (v/v) at 25°C/1 h, dry heat at 105°C/24 h and UV-vis light/4 days] and validated for specificity, detection limit, quantitation limit, linearity, precision, accuracy and robustness. For amitriptyline and its four known organic impurities, the quantitation limits, linearity and recoveries were in the ranges 0.25-3.0 μg/ml (r2 > 0.999) and 87.9-107.6%, respectively. The mass (m/z) spectral data of amitriptyline hydrochloride and its impurity are discussed. The proposed LC method is also suitable for impurity profiling and assay determination of amitriptyline in bulk drugs and pharmaceutical formulations.
Collapse
Affiliation(s)
- N V V D Praveen Boppy
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | | | - Niroja Vadagam
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | - Mohan Pasham
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | | | - Belquis Begum
- MNR College of Pharmacy, Sangareddy, Telangana, India
| |
Collapse
|