1
|
Boughanem C, Delaunay N, Pichon V. Salt assisted liquid-liquid extraction combined with dispersive liquid-liquid microextraction for the determination of 24 regulated polycyclic aromatic hydrocarbons in human serum. J Pharm Biomed Anal 2024; 248:116319. [PMID: 38908235 DOI: 10.1016/j.jpba.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants of great concern due to their carcinogenicity and mutagenicity. Their determination in human serum, particularly in at-risk populations, is necessary but difficult because they are distributed over a wide range of polarity and are present at trace level. A new method combining salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) adapted to a reduced volume of sample (100 µl) was developed to determine 24 PAHs in human serum. Some key parameters of DLLME-SFO (volume of extraction solvent, ratio of extraction/dispersive solvent volumes, and salt addition) were first studied by applying it to spiked pure water. For its application to serum, a sample treatment step involving SALLE was optimized in terms of nature and content of salts and applied upstream of DLLME-SFO. It was applied to the extraction of 24 regulated PAHs from spiked serum followed by an analysis by liquid chromatography coupled with UV and fluorescence detection. The extraction recoveries ranged from 48.2 and 116.0 % (relative standard deviations: 2.0-14.6 %, n=5-9), leading to limits of quantification of PAHs in human serum from 0.04 to 1.03 µg/L using fluorescence detection and from 10 to 40 µg/L using UV detection. This final method combining SALLE and DLLME-SFO showed numerous advantages such as no evaporation step, high efficiency and low solvent-consumption and will be useful for monitoring PAHs in low volumes of serum.
Collapse
Affiliation(s)
- Cécile Boughanem
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL University, Paris, France; Sorbonne University, Paris, France.
| |
Collapse
|
2
|
Peng C, Zhang S, Li X. A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples. Molecules 2024; 29:3480. [PMID: 39124885 PMCID: PMC11314396 DOI: 10.3390/molecules29153480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This paper presents a novel dispersive liquid-liquid microextraction (DLLME) method that employs solidified hydrophobic deep eutectic solvent (DES) with hydrophilic DES acting as the dispersant. The aim is to enrich polychlorinated biphenyls (PCBs) from water samples for subsequent determination by gas chromatography-mass spectrometry. The effects of both the hydrophobic DES as the extractant and the hydrophilic DES as the dispersant were thoroughly investigated. Optimization of the key factors influencing extraction efficiency was performed, and the method was subsequently validated. Specifically, a hydrophobic DES called DES2, prepared by combining thymol and decanoic acid in a molar ratio of 3:2, was selected as the extraction solvent. Meanwhile, a hydrophilic DES named DES6, prepared from choline chloride and acetic acid in a molar ratio of 1:2, was chosen as a dispersant. Under the optimal extraction conditions, the developed method exhibited excellent linearity over the concentration range of 0.01-5.0 µg/L, low limits of detection ranging from 3.0 to 5.1 ng/L, relative standard deviations less than 4.1%, and enrichment factors between 182 and 204 for PCBs. Finally, the effectiveness of the developed method was successfully demonstrated through residue determination of PCBs in water samples.
Collapse
Affiliation(s)
- Chunlong Peng
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou 318000, China; (C.P.); (S.Z.)
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Shuochen Zhang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou 318000, China; (C.P.); (S.Z.)
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- School of Food and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
3
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Wang LL, Liu N, Hu S, Xing RR, Wang RQ, Yang L, Chen X. Application of instantaneous nebulization dispersive liquid-phase microextraction combined with HPLC for the determination of chalcone and isoflavone in traditional Chinese medicines. J Sep Sci 2023; 46:e2300326. [PMID: 37485627 DOI: 10.1002/jssc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
A simple and rapid instantaneous nebulization dispersive liquid-phase microextraction method was developed, and combined with high-performance liquid chromatography for determination of the contents of seven analytes in traditional Chinese medicines. In this study, using the sprinkler device to achieve instantaneous synchronous dispersion and extraction, only one spray can rapidly achieve the concentration and enrichment of seven kinds of chalcone and isoflavones. The key factors affecting the extraction efficiency were optimized including the type and volume of extractant, the pH and salt concentration of the sample phase, and the number of dispersion. Under the optimal conditions, the enrichment factor of the target analytes ranged from 103.1 to 180.9, with good linearity and correlation coefficients above 0.9970. The limits of detection ranged from 0.02 to 0.15 ng/mL, with good accuracy (recoveries 91.1 to 108.9%) and precision (relative standard deviations 1.5-7.1%). This method has short extraction time (2 s), low organic solvent consumption and high enrichment effect, so it has a wide application prospects.
Collapse
Affiliation(s)
- Ling-Li Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Na Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rong-Rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Run-Qin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
5
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Lv Z, Dong F, Zhang W, Chen S, Zheng F, Zhou L, Liu M, Huo T. Determination of Persistent Organic Pollutants (POPs) in Atmospheric Gases and Particles by Solid-Phase Extraction (SPE) and Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2144873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Zhenzhen Lv
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, China
| | - Wen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shanyu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Fei Zheng
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Lin Zhou
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Mingxue Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|