1
|
Tsopelas F, Tsantili-Kakoulidou A. Advances with weak affinity chromatography for fragment screening. Expert Opin Drug Discov 2019; 14:1125-1135. [DOI: 10.1080/17460441.2019.1648425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
2
|
Hage DS. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications. Clin Chem 2017; 63:1083-1093. [PMID: 28396561 DOI: 10.1373/clinchem.2016.262253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. CONTENT This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE.
| |
Collapse
|
3
|
Felix S, Kollu P, Raghupathy BP, Jeong SK, Grace AN. Electrocatalytic oxidation of carbohydrates and dopamine in alkaline and neutral medium using CuO nanoplatelets. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, White CJ, Carter N, Hage DS. Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:49-63. [PMID: 24572459 PMCID: PMC4112177 DOI: 10.1016/j.jchromb.2014.01.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/15/2022]
Abstract
Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Erika L Pfaunmiller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Christopher J White
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - NaTasha Carter
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
5
|
Immobilized lipodisks as model membranes in high-throughput HPLC-MS analysis. Anal Bioanal Chem 2013; 405:4859-69. [DOI: 10.1007/s00216-013-6892-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/25/2022]
|
6
|
Fragment screening of cyclin G-associated kinase by weak affinity chromatography. Anal Bioanal Chem 2012; 404:2417-25. [PMID: 22918538 PMCID: PMC3475971 DOI: 10.1007/s00216-012-6335-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (KD) = mM − μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target—cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with KD < 200 μM were detected, including a few highly efficient GAK binders (KD of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.
Collapse
|
7
|
Li Q, Qu H. Study on the hypoglycemic activities and metabolism of alcohol extract of Alismatis Rhizoma. Fitoterapia 2012; 83:1046-53. [PMID: 22613807 DOI: 10.1016/j.fitote.2012.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022]
Abstract
The Alisma rhizoma is widely used in the therapy of diabetes in traditional folk medicine of China. Compositional analysis of the alcohol extract of Alismatis Rhizoma (AEA) revealed that the eight compounds gotten from AEA are all belonging to protostane-type triterpenes. The AEA and compounds were incubated with 3T3-L1 preadipocytes, glucose level in the 3T3-L1 adipocytes culture medium and lipid content in 3T3-L1 adipocytes were measured, and analysis of alpha-glucosidase inhibition of AEA and compounds. At the same time, the uptake of AEA by 3T3-L1 adipocytes and the metabolism of AEA in SD rats were analyzed by HPLC-ESI/MS. As result, AEA increased glucose uptake in 3T3-L1 adipocyte model, not increase adipogenesis; AEA inhibited alpha-glucosidase activity; alisol A-24-aceate (8) was absorbed by 3T3-L1 adipocytes; and two compounds were detected in blood and three were detected in urine in SD rats. So AEA had protostane-type triterpenes, these type compounds in AEA may have hypoglycemic activity via inhibition of alpha-glucosidase activity and promotion of glucose uptake. In contrast to the anti-diabetic drug thiazolidinediones, they did not induce adipogenesis, avoiding the displeased effects of rosiglitazone.
Collapse
Affiliation(s)
- Qin Li
- College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | | |
Collapse
|
8
|
Paek SH, Cho IH, Seo SM, Kim DH, Paek SH. Production of rapidly reversible antibody and its performance characterization as binder for continuous glucose monitoring. Analyst 2011; 136:4268-76. [PMID: 21879141 DOI: 10.1039/c1an15338b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To effectively control diabetes, a method to reliably measure glucose fluctuations in the body over given time periods needs to be developed. Current glucose monitoring systems depend on the substrate decomposition by an enzyme to detect the product; however, the enzyme activity significantly decays over time, which complicates analysis. In this study, we investigated an alternative method of glucose analysis based on antigen-antibody binding, which may be active over an extended period of time. To produce monoclonal antibodies, mice were immunized with molecular weight (M(W)) 10K dextran chemically conjugated with keyhole limpet hemocyanin. Since dextran contains glucose molecules polymerized via a 1,6-linkage, the produced antibodies had a binding selectivity that could discriminate biological glucose compounds with a 1,4-linkage. Three antibody clones with different affinities were screened using the M(W) 1K dextran-bovine serum albumin conjugates as the capture ligand. Among the antibodies tested, the antibody clone Glu 26 had the lowest affinity (K(A) = 3.56 × 10(6) M(-1)) and the most rapid dissociation (k(d) = 1.17 × 10(-2) s(-1)) with the polysaccharide immobilized on the solid surfaces. When glucose was added to the medium, the sensor signal was inversely proportional to the glucose concentration in a range between 10 and 1000 mg dL(-1), which covered the clinical range. Under the optimal conditions, the response time was about 3 min for association and 8 min for dissociation based on a 95% recovery of the final equilibrium.
Collapse
Affiliation(s)
- Sung-Ho Paek
- Program for Bio-Microsystem Technology, Korea University, 204C Specific Research Wing, Biotechnology Building (Green Campus), 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul, 136-701, Korea
| | | | | | | | | |
Collapse
|
9
|
Duong-Thi MD, Meiby E, Bergström M, Fex T, Isaksson R, Ohlson S. Weak affinity chromatography as a new approach for fragment screening in drug discovery. Anal Biochem 2011; 414:138-46. [PMID: 21352794 DOI: 10.1016/j.ab.2011.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
Abstract
Fragment-based drug design (FBDD) is currently being implemented in drug discovery, creating a demand for developing efficient techniques for fragment screening. Due to the intrinsic weak or transient binding of fragments (mM-μM in dissociation constant (K(D))) to targets, methods must be sensitive enough to accurately detect and quantify an interaction. This study presents weak affinity chromatography (WAC) as an alternative tool for screening of small fragments. The technology was demonstrated by screening of a selected 23-compound fragment collection of documented binders, mostly amidines, using trypsin and thrombin as model target protease proteins. WAC was proven to be a sensitive, robust, and reproducible technique that also provides information about affinity of a fragment in the range of 1 mM-10 μM. Furthermore, it has potential for high throughput as was evidenced by analyzing mixtures in the range of 10 substances by WAC-MS. The accessibility and flexibility of the technology were shown as fragment screening can be performed on standard HPLC equipment. The technology can further be miniaturized and adapted to the requirements of affinity ranges of the fragment library. All these features of WAC make it a potential method in drug discovery for fragment screening.
Collapse
|
10
|
Ohlson S, Duong-Thi MD, Bergström M, Fex T, Hansson L, Pedersen L, Guazotti S, Isaksson R. Toward high-throughput drug screening on a chip-based parallel affinity separation platform. J Sep Sci 2011; 33:2575-81. [PMID: 20730836 DOI: 10.1002/jssc.201000314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput screening of compound libraries, including the study of fragments, has become one of the cornerstones in modern drug discovery research. During this process hits are defined that may be developed into valuable leads and eventually into possible drug candidates. In this paper, we have demonstrated that parallel zonal weak affinity chromatography in microcolumns on a chip offers a possible screening format for weakly binding ligands toward a protein target. We used albumin as a model system because this transport protein is well established as a binder (both weak and strong) for drug substances. Bovine serum albumin was immobilized on microparticulate diolsilica particles and then packed into a 24-channel cartridge, which served as the separation platform. Analysis of the obtained chromatograms yielded information about affinity even in the millimolar range. Employing this approach, thousands of substances can be screened in just a day. We feel confident that zonal affinity chromatography will provide a useful technology in the future for performing high-throughput screening.
Collapse
Affiliation(s)
- Sten Ohlson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li F, Feng Y, Yang L, Li L, Tang C, Tang B. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode. Biosens Bioelectron 2010; 26:2489-94. [PMID: 21126864 DOI: 10.1016/j.bios.2010.10.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/08/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, 88 Wenhua East Road, Jinan 250014, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Competitive capacitive biosensing technique (CCBT): a novel technique for monitoring low molecular mass analytes using glucose assay as a model study. Anal Bioanal Chem 2010; 397:1217-24. [PMID: 20401723 DOI: 10.1007/s00216-010-3641-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/04/2010] [Accepted: 03/07/2010] [Indexed: 01/03/2023]
Abstract
A novel technique for monitoring of low molecular mass analytes using a flow-injection capacitive biosensor is presented. The method is based on the ability of a small molecular mass analyte to displace a large analyte-carrier conjugate from the binding sites of an immobilized biorecognition element with weak affinity to both compounds. A model study was performed on glucose as the small molecular mass analyte. In the absence of glucose, binding of a glucose polymer or a glycoconjugate to concanavalin A results in a capacitance decrease. Upon introduction of glucose, it displaces a part of the bound glucose polymer or glycoconjugate leading to a partial restoration of capacitance. Experimental results show that the change in capacitance depends linearly on glucose concentration within the range from 1.0 x 10(-5) to 1.0 x 10(-1) M, corresponding to 1.8 microg ml(-1) to 18 mg ml(-1) in a logarithmic plot, with a detection limit of 1.0 x 10(-6) (0.18 microg ml(-1)) under optimized conditions. In addition, by modifying the molecular mass of the glucose polymer, amount of biorecognition element, and buffer composition, we were able to tune the analyte-sensing range. The developed technique has the benefits of expanded dynamic range, high sensitivity, and excellent reusability.
Collapse
|
13
|
Mallik R, Yoo MJ, Briscoe CJ, Hage DS. Analysis of drug-protein binding by ultrafast affinity chromatography using immobilized human serum albumin. J Chromatogr A 2010; 1217:2796-803. [PMID: 20227701 DOI: 10.1016/j.chroma.2010.02.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
Abstract
Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug-binding studies and in the high-throughput screening of new drug candidates.
Collapse
Affiliation(s)
- Rangan Mallik
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | | | |
Collapse
|
14
|
Labib M, Hedström M, Amin M, Mattiasson B. A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode. Anal Chim Acta 2010; 659:194-200. [DOI: 10.1016/j.aca.2009.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
|
15
|
Bergström M, Liu S, Kiick KL, Ohlson S. Cholera toxin inhibitors studied with high-performance liquid affinity chromatography: a robust method to evaluate receptor-ligand interactions. Chem Biol Drug Des 2009; 73:132-41. [PMID: 19152642 DOI: 10.1111/j.1747-0285.2008.00758.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-adhesion drugs may be an alternative to antibiotics to control infection of micro-organisms. The well-characterized interaction between cholera toxin and the cellular glycolipid GM1 makes it an attractive model for inhibition studies in general. In this report, we demonstrate a high-performance liquid affinity chromatography approach called weak affinity chromatography to evaluate cholera toxin inhibitors. The cholera toxin B-subunit was covalently coupled to porous silica and a (weak) affinity column was produced. The K(D) values of galactose and meta-nitrophenyl alpha-D-galactoside were determined with weak affinity chromatography to be 52 and 1 mM, respectively, which agree well with IC(50) values previously reported. To increase inhibition potency multivalent inhibitors have been developed and the interaction with multivalent glycopolypeptides was also evaluated. The affinity of these compounds was found to correlate with the galactoside content but K(D) values were not obtained because of the inhomogeneous response and slow off-rate from multivalent interactions. Despite the limitations in obtaining direct K(D) values of the multivalent galactopolypeptides, weak affinity chromatography represents an additional and valuable tool in the evaluation of monovalent as well as multivalent cholera toxin inhibitors. It offers multiple advantages, such as a low sample consumption, high reproducibility and short analysis time, which are often not observed in other methods of analysis.
Collapse
Affiliation(s)
- Maria Bergström
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.
| | | | | | | |
Collapse
|