1
|
Mohanraj L, Carter C, Liu J, Swift-Scanlan T. MicroRNA Profiles in Hematopoietic Stem Cell Transplant Recipients. Biol Res Nurs 2024; 26:559-568. [PMID: 38819871 DOI: 10.1177/10998004241257847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
2
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Gómez-Carballa A, Navarro L, Pardo-Seco J, Bello X, Pischedda S, Viz-Lasheras S, Camino-Mera A, Currás MJ, Ferreirós I, Mallah N, Rey-Vázquez S, Redondo L, Dacosta-Urbieta A, Caamaño-Viña F, Rivero-Calle I, Rodriguez-Tenreiro C, Martinón-Torres F, Salas A. Music compensates for altered gene expression in age-related cognitive disorders. Sci Rep 2023; 13:21259. [PMID: 38040763 PMCID: PMC10692168 DOI: 10.1038/s41598-023-48094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Extensive literature has explored the beneficial effects of music in age-related cognitive disorders (ACD), but limited knowledge exists regarding its impact on gene expression. We analyzed transcriptomes of ACD patients and healthy controls, pre-post a music session (n = 60), and main genes/pathways were compared to those dysregulated in mild cognitive impairment (MCI) and Alzheimer's disease (AD) as revealed by a multi-cohort study (n = 1269 MCI/AD and controls). Music was associated with 2.3 times more whole-genome gene expression, particularly on neurodegeneration-related genes, in ACD than in controls. Co-expressed gene-modules and pathways analysis demonstrated that music impacted autophagy, vesicle and endosome organization, biological processes commonly dysregulated in MCI/AD. Notably, the data indicated a strong negative correlation between musically-modified genes/pathways in ACD and those dysregulated in MCI/AD. These findings highlight the compensatory effect of music on genes/biological processes affected in MCI/AD, providing insights into the molecular mechanisms underlying the benefits of music on these disorders.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Laura Navarro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - María José Currás
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Isabel Ferreirós
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Narmeen Mallah
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
- Department of Preventive Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Sara Rey-Vázquez
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Lorenzo Redondo
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Fernando Caamaño-Viña
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain.
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.
| |
Collapse
|
4
|
Geiger L, Orsi G, Cseh T, Gombos K, Illés Z, Czéh B. Circulating microRNAs correlate with structural and functional MRI parameters in patients with multiple sclerosis. Front Mol Neurosci 2023; 16:1173212. [PMID: 37881368 PMCID: PMC10597671 DOI: 10.3389/fnmol.2023.1173212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters. Methods We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes. Microstructural changes in the white matter were investigated with diffusion tensor imaging. Magnetic resonance spectroscopy was performed to measure cerebral metabolites. Functional connectivity within the default mode network was examined with resting-state functional MRI. On the day of the MRI measurements, we collected serum samples and carried out quantitative analysis of ten pre-selected microRNAs using droplet digital PCR. Results Serum level of miR-143.3p could differentiate between MS subtypes and had lower levels in progressive MS types. We found significant associations between microRNA levels and MRI measures: (1) higher miR-92a.3p and miR-486.5p levels were associated with greater total white matter lesion volumes within the cervical spine, (2) decreased miR-142.5p levels was associated with reduced total creatinine concentration and (3) miR-92a.3p, miR-142.5p and miR-486.5p levels were associated with functional connectivity strengths between specific nodes of the default mode network. Specifically, we found a negative association between miR-92a.3p and miR-486.5p levels and connectivity strength between the lateral temporal cortex and posterior inferior parietal lobule, and a positive association between miR-142.5p level and connectivity strength between the retrosplenial cortex and temporal pole. However, miRNA levels were not associated with regional brain volumes. Conclusion We provide here further evidence that circulating microRNAs may show correlation with both structural and functional neuroimaging outcomes in patients with MS.
Collapse
Affiliation(s)
- Lili Geiger
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Eötvös Loránd Research Network, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
| | - Tamás Cseh
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Gombos
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsolt Illés
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics (Basel) 2022; 12:diagnostics12081914. [PMID: 36010264 PMCID: PMC9406323 DOI: 10.3390/diagnostics12081914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system of many young adults. More than half of MS patients develop cognition problems. Although several genomic and transcriptomic studies are currently reported in MS cognitive impairment, a comprehensive repository dealing with all the experimental data is still underdeveloped. In this study, we combined text mining, gene regulation, pathway analysis, and genome-wide association studies (GWAS) to identify miRNA biomarkers to explore the cognitive dysfunction in MS, and to understand the genomic etiology of the disease. We first identified the dysregulated miRNAs associated with MS and cognitive dysfunction using PubTator (text mining), HMDD (experimental associations), miR2Disease, and PhenomiR database (differentially expressed miRNAs). Our results suggest that miRNAs such as hsa-mir-148b-3p, hsa-mir-7b-5p, and hsa-mir-7a-5p are commonly associated with MS and cognitive dysfunction. Next, we retrieved GWAS signals from GWAS Catalog, and analyzed the enrichment analysis of association signals in genes/miRNAs and their association networks. Then, we identified susceptible genetic loci, rs17119 (chromosome 6; p = 1 × 10−10), rs1843938 (chromosome 7; p = 1 × 10−10), and rs11637611 (chromosome 15; p = 1.00 × 10−15), associated with significant genetic risk. Lastly, we conducted a pathway analysis for the susceptible genetic variants and identified novel risk pathways. The ECM receptor signaling pathway (p = 3.98 × 10−8) and PI3K/Akt signaling pathway (p = 5.98 × 10−5) were found to be associated with differentially expressed miRNA biomarkers.
Collapse
|
6
|
Dominguez-Mozo MI, Casanova I, De Torres L, Aladro-Benito Y, Perez-Perez S, Garcia-Martínez A, Gomez P, Abellan S, De Antonio E, Lopez-De-Silanes C, Alvarez-Lafuente R. microRNA Expression and Its Association With Disability and Brain Atrophy in Multiple Sclerosis Patients Treated With Glatiramer Acetate. Front Immunol 2022; 13:904683. [PMID: 35774792 PMCID: PMC9239306 DOI: 10.3389/fimmu.2022.904683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background MicroRNAs are small non-coding RNA that regulate gene expression at a post-transcriptional level affecting several cellular processes including inflammation, neurodegeneration and remyelination. Different patterns of miRNAs expression have been demonstrated in multiple sclerosis compared to controls, as well as in different courses of the disease. For these reason they have been postulated as promising biomarkers candidates in multiple sclerosis. Objective to correlate serum microRNAs profile expression with disability, cognitive functioning and brain volume in patients with remitting-relapsing multiple sclerosis. Methods cross-sectional study in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate. Disability was measured with Expanded Disability Status Scale (EDSS) and cognitive function was studied with Symbol Digit Modalities Test (SDMT). Brain volume was analyzed with automatic software NeuroQuant®. Results We found an association between miR.146a.5p (rs:0.434, p=0.03) and miR.9.5p (rs:0.516, p=0.028) with EDSS; and miR-146a.5p (rs:-0.476, p=0.016) and miR-126.3p (rs:-0.528, p=0.007) with SDMT. Regarding to the brain volume, miR.9.5p correlated with thalamus (rs:-0.545, p=0.036); miR.200c.3p with pallidum (rs:-0.68, p=0.002) and cerebellum (rs:-0.472, p=0.048); miR-138.5p with amygdala (rs:0.73, p=0.016) and pallidum (rs:0.64, p=0.048); and miR-223.3p with caudate (rs:0.46, p=0.04). Conclusions These data support the hypothesis of microRNA as potential biomarkers in this disease. More studies are needed to validate these results and to better understand the role of microRNAs in the pathogenesis, monitoring and therapeutic response of multiple sclerosis.
Collapse
Affiliation(s)
- María I. Dominguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ignacio Casanova
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Laura De Torres
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | | | - Silvia Perez-Perez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Angel Garcia-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Patricia Gomez
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Sara Abellan
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Esther De Antonio
- Department of Radiology, Hospital Universitario de Torrejón, Madrid, Spain
| | - Carlos Lopez-De-Silanes
- Department of Neurology, Hospital Universitario de Torrejón, Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
7
|
Huang Y, Hao J, Liao Y, Zhou L, Wang K, Zou H, Hu Y, Li J. Transcriptome sequencing identified the ceRNA network associated with recurrent spontaneous abortion. BMC Med Genomics 2021; 14:278. [PMID: 34814929 PMCID: PMC8609870 DOI: 10.1186/s12920-021-01125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is one of the common complication of pregnancy, bringing heavy burden to the patients and their families. The study aimed to explore the lncRNA-miRNA-mRNA network associated with recurrent spontaneous abortion. Methods By transcriptome sequencing, we detected differences in lncRNA, miRNA and mRNA expression in villus tissue samples collected from 3 patients with RSA and 3 normal abortion patients. Differentially expressed lncRNAs, miRNAs and genes (DELs, DEMs and DEGs, respectively) were identified, and Geno Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to determine the functions of DELs and DEGs, which were analysed by Fisher’s test. We also observed the regulatory relationships between miRNA-mRNA and lncRNA-miRNA by Cytoscape 3.6.1. Results The results showed that 1008 DELs (523 upregulated and 485 downregulated), 475 DEGs (201 upregulated and 274 downregulated) and 37 DEMs (15 upregulated and 22 downregulated) were identified. And we also constructed a novel lncRNA-related ceRNA network containing 31 lncRNAs, 1 miRNA (hsa-miR-210-5p) and 3 genes (NTNG2, GRIA1 and AQP1). Conclusions lncRNA-related ceRNA network containing 31 lncRNAs, 1 miRNA (hsa-miR-210-5p) and 3 mRNAs (NTNG2, GRIA1 and AQP1) was constructed. The results may provide a basic theory for elucidating the mechanism underlying RSA. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01125-4.
Collapse
Affiliation(s)
- Yong Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Jiayuan Hao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Yuan Liao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Lihua Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Kaiju Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Hui Zou
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Ying Hu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China
| | - Juan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570311, Hainan, People's Republic of China.
| |
Collapse
|
8
|
Lassandro G, Ciaccia L, Amoruso A, Palladino V, Palmieri VV, Giordano P. Focus on MicroRNAs as Biomarker in Pediatric Diseases. Curr Pharm Des 2021; 27:826-832. [PMID: 33087027 DOI: 10.2174/1381612826666201021125512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MiRNAs are a class of small non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. MiRNAs are considered a class of epigenetic biomarkers. These biomarkers can investigate disease at different stages: diagnosis, therapy or clinical follow-up. OBJECTIVE The aim of this paper is to highlight the innovative use of miRNAs in several childhood diseases. METHODS We conducted a literature review to search the usage of miRNAs in pediatric clinical routine or experimental trials. RESULTS We found a possible key role of miRNAs in different pediatric illnesses (metabolic alterations, coagulation defects, cancer). CONCLUSION The modest literature production denotes that further investigation is needed to assess and validate the promising role of miRNAs as non-invasive biomarkers in pediatric disorders.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Loredana Ciaccia
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Amoruso
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Viviana V Palmieri
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
9
|
Maciak K, Dziedzic A, Miller E, Saluk-Bijak J. miR-155 as an Important Regulator of Multiple Sclerosis Pathogenesis. A Review. Int J Mol Sci 2021; 22:ijms22094332. [PMID: 33919306 PMCID: PMC8122504 DOI: 10.3390/ijms22094332] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease and the leading cause of disability among young adults. MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of gene expression. Of them, miR-155 is a crucial regulator of inflammation and plays a role in modulating the autoimmune response in MS. miR-155 is involved in blood–brain barrier (BBB) disruption via down-regulation of key junctional proteins under inflammatory conditions. It drives demyelination processes by contributing to, e.g., microglial activation, polarization of astrocytes, and down-regulation of CD47 protein and affecting crucial transcription factors. miR-155 has a huge impact on the development of neuropathic pain and indirectly influences a regulatory T (Treg) cell differentiation involved in the alleviation of pain hypersensitivity. This review also focused on neuropsychiatric symptoms appearing as a result of disease-associated stressors, brain atrophy, and pro-inflammatory factors. Recent studies revealed the role of miR-155 in regulating anxiety, stress, inflammation in the hippocampus, and treatment-resistant depression. Inhibition of miR-155 expression was demonstrated to be effective in preventing processes involved in the pathophysiology of MS. This review aimed to support the better understanding the great role of miR-155 dysregulation in various aspects of MS pathophysiology and highlight future perspectives for this molecule.
Collapse
Affiliation(s)
- Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
- Correspondence:
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| |
Collapse
|
10
|
Chase Huizar C, Raphael I, Forsthuber TG. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 2020; 358:104219. [PMID: 33039896 PMCID: PMC7927152 DOI: 10.1016/j.cellimm.2020.104219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.
Collapse
Affiliation(s)
- Carol Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, PA, USA.
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
A Pilot Longitudinal Evaluation of MicroRNAs for Monitoring the Cognitive Impairment in Pediatric Multiple Sclerosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, seem to play a key role in complex diseases like multiple sclerosis (MS), as well as in many cognitive functions associated with the disease. In a previous cross-sectional evaluation on pediatric MS (PedMS) patients, the expression of some miRNAs and their target genes were found to be associated with the scores of some neuropsychiatric tests, thus suggesting that they may be involved in early processes of cognitive impairment. To verify these data, we asked the same patients to be re-evaluated after a 1-year interval; unfortunately, only nine of them agreed to this further clinical and molecular analysis. The main results showed that 13 differentially expressed miRNAs discriminated the two time-points. Among them, the expression of miR-182-5p, miR-320a-3p, miR-744-5p and miR-192-5p significantly correlated with the attention and information processing speed performances, whereas the expression of miR-182-5p, miR-451a, miR-4742-3p and miR-320a-3p correlated with the expressive language performances. The analysis of mRNA expression uncovered 58 predicted and/or validated miRNA-target pairs, including 23 target genes, some of them already associated with cognitive impairment, such as the transducing beta like 1 X-linked receptor-1 gene (TBL1XR1), correlated to disorders of neurodevelopment; the Snf2 related CREBBP activator protein gene (SRCAP) that was found implicated in a rare form of dementia; and the glia maturation factor beta gene (GMFB), which has been reported to be implicated in neurodegeneration and neuroinflammation. No molecular pathways involving the most targeted genes survived the adjustment for multiple data. Although preliminary, these findings showed the feasibility of the methods also applied to longitudinal investigations, as well as the reliability of the obtained results. These findings should be confirmed in larger PedMS cohorts in order to identify early markers of cognitive impairment, towards which more efficient therapeutic efforts can be addressed.
Collapse
|
12
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
13
|
Gul M, Azari Jafari A, Shah M, Mirmoeeni S, Haider SU, Moinuddin S, Chaudhry A. Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review. Int J Mol Sci 2020; 21:E6020. [PMID: 32825639 PMCID: PMC7547375 DOI: 10.3390/ijms21176020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS) which can lead to severe disability. Several diseases can mimic the clinical manifestations of MS. This can often lead to a prolonged period that involves numerous tests and investigations before a definitive diagnosis is reached. As well as the possibility of misdiagnosis. Molecular biomarkers can play a unique role in this regard. Molecular biomarkers offer a unique view into the CNS disorders. They help us understand the pathophysiology of disease as well as guiding our diagnostic, therapeutic, and prognostic approaches in CNS disorders. This review highlights the most prominent molecular biomarkers found in the literature with respect to MS and its related disorders. Based on numerous recent clinical and experimental studies, we demonstrate that several molecular biomarkers could very well aid us in differentiating MS from its related disorders. The implications of this work will hopefully serve clinicians and researchers alike, who regularly deal with MS and its related disorders.
Collapse
Affiliation(s)
- Maryam Gul
- Precision Rheumatology INC, 2050 South Euclid Street, Anaheim, CA 92802, USA
| | - Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran; (A.A.J.); (S.M.)
| | - Muffaqam Shah
- Deccan College of Medical Sciences, P.O. Kanchanbagh, DMRL ‘X’ Road, Santhosh Nagar, Hyderabad 500058, Telangana State, India;
| | - Seyyedmohammadsadeq Mirmoeeni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran; (A.A.J.); (S.M.)
| | - Safee Ullah Haider
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Shaikh Zayed Medical Complex, Lahore 54000, Pakistan;
| | - Sadia Moinuddin
- Department of Internal Medicine, San Antonio Regional Medical Center, 999 San Bernardino Rd, Upland, CA 91786, USA;
| | - Ammar Chaudhry
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
14
|
E P, M S, E P, A B, L P, M N, L R, R F, L T, M F, A G, L P, Mg M, E C, G F, F P, C C, M F, L M, E M, Rg V, L M, B G, Mp A. Cognitive reserve is a determinant of social and occupational attainment in patients with pediatric and adult onset multiple sclerosis. Mult Scler Relat Disord 2020; 42:102145. [PMID: 32408152 DOI: 10.1016/j.msard.2020.102145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is limited information on socio-professional attainment in pediatric-onset multiple sclerosis (POMS) compared with adult-onset MS (AOMS). OBJECTIVES To assess socio-professional outcomes in POMS and AOMS and variables influencing these outcomes. METHODS One-hundred-fifteen AOMS and 111 POMS patients underwent neuropsychological testing (Brief Repeatable Battery, Stroop test), assessment of cognitive reserve (CR) (education, National Adult reading Test -NART, Barratt Simplified Measure of Social Status), fatigue (Fatigue Severity Scale), depression (Montgomery-Åsberg Depression Rating Scale), socio-professional performance (Work and Social Adjustment Scale -WSAS). Prognostic factors were assessed using logistic and linear multivariable regression analyses. RESULTS 34.5% of patients showed CI without significant differences between AOMS and POMS. Cognitively impaired patients were older (p=0.024), had higher EDSS scores (p=0.041) and lower IQ (p<0.001) compared with cognitively preserved patients. Better WSAS scores were associated with younger age (p=0.007), lower EDSS (p<0.001) and higher educational levels (p=0.001). Fourteen POMS (13%) and six AOMS (5%) achieved a lower educational level compared with their parents (p=0.06). POMS exhibiting a lower than expected educational level, had a lower median IQ compared with the remaining subjects (101 vs 106.5; p=0.03). Unemployment rate was predicted by higher disability (p=0.044) and lower educational levels (p<0.001). Occupational complexity was positively correlated to educational level (<0.001) and NART scores (<0.040). CONCLUSION This study underscores the complex relationships between cognition and educational, socioeconomic and professional attainment in MS and supports a protective role of CR in both POMS and AOMS.
Collapse
Affiliation(s)
- Portaccio E
- San Giovanni di Dio Hospital, Florence, Italy
| | - Simone M
- Department of Biomedical Sciences and Human Oncology, University "Aldo Moro" of Bari..
| | - Prestipino E
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Bellinvia A
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Pastò L
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Niccolai M
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Razzolini L
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Fratangelo R
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Tudisco L
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Fonderico M
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Ghezzi A
- MS Centre, Hospital of Gallarate, Italy
| | - Pippolo L
- MS Centre, Hospital of Gallarate, Italy
| | - Marrosu Mg
- MS Centre, Binaghi Hospital, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy
| | - Cocco E
- MS Centre, Binaghi Hospital, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy
| | - Fenu G
- MS Centre, Binaghi Hospital, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy
| | - Patti F
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | - Chisari C
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | | | - Moiola L
- IRCCS Hospital San Raffaele, Milan, Italy
| | | | - Viterbo Rg
- Department of Basic Medical Sciences, Neuroscience and Sense Organs. University " Aldo Moro" of Bari, Italy
| | - Margari L
- Department of Biomedical Sciences and Human Oncology, University "Aldo Moro" of Bari
| | - Goretti B
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy
| | - Amato Mp
- Department NEUROFARBA, Section Neurosciences, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
15
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
16
|
Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. CHILDREN-BASEL 2019; 6:children6020021. [PMID: 30720736 PMCID: PMC6406784 DOI: 10.3390/children6020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Pediatric-onset multiple sclerosis (POMS) is relatively rare, but as technology and neuroimaging advance, an increasing number of cases are identified, and our understanding of how multiple sclerosis (MS) impacts the developing brain improves. There are consistent findings in the literature highlighting the impact of MS and other demyelinating diseases on cognitive functioning and cognitive development. We also have a better understanding of how POMS impacts psychosocial functioning and functional outcomes in daily living. This paper hopes to review findings associated with cognitive and psychosocial functioning in patients with POMS, as well as explore more recent advances in the field and how they relate to cognitive and psychosocial outcomes. We also discuss the ongoing need for future studies with a focus on better understanding deficits and disease correlates, but also preventative measures and potential rehabilitation.
Collapse
|
17
|
Liguori M, Nuzziello N, Simone M, Amoroso N, Viterbo RG, Tangaro S, Consiglio A, Giordano P, Bellotti R, Trojano M. Association between miRNAs expression and cognitive performances of Pediatric Multiple Sclerosis patients: A pilot study. Brain Behav 2019; 9:e01199. [PMID: 30656857 PMCID: PMC6379516 DOI: 10.1002/brb3.1199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The Pediatric onset of Multiple Sclerosis (PedMS) occurs in up to 10% of all cases. Cognitive impairment is one of the frequent symptoms, exerting severe impact in patients' quality of life and school performances. The underlying pathogenic mechanisms are not fully understood, and molecular markers predictive of cognitive dysfunctions need to be identified. On these grounds, we searched for molecular signature/s (i.e., miRNAs and target genes) associated with cognitive impairment in a selected population of PedMS patients. Additionally, changes of their regional brain volumes associated with the miRNAs of interest were investigated. METHODS Nineteen PedMS subjects received a full cognitive evaluation; total RNA from peripheral blood samples was processed by next-generation sequencing followed by a bioinformatics/biostatistics analysis. RESULTS The expression of 11 miRNAs significantly correlated with the scores obtained at different cognitive tests; among the others, eight miRNAs correlated with the Trail Making Tests. The computational target prediction identified 337 genes targeted by the miRNAs of interest; a tangled network of molecular connections was hypothesized, where genes like BST1, NTNG2, SPTB, and STAB1, already associated with cognitive dysfunctions, were nodes of the net. Furthermore, the expression of some miRNAs significantly correlated with cerebral volumes, for example, four miRNAs with the cerebellum cortex. CONCLUSIONS As far as we know, this is the first evaluation exploring miRNAs in the cognitive performances of PedMS. Although none of these results survived the multiple tests' corrections, we believe that they may represent a step forward the identification of biomarkers useful for monitoring and targeting the onset/progression of cognitive impairments in MS.
Collapse
Affiliation(s)
- Maria Liguori
- National Research CouncilBari UnitInstitute of Biomedical TechnologiesBariItaly
| | - Nicoletta Nuzziello
- National Research CouncilBari UnitInstitute of Biomedical TechnologiesBariItaly
| | - Marta Simone
- Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and NeurorehabilitationScientific Institute IRCCS E. MedeaBrindisiItaly
- Department of Basic Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Nicola Amoroso
- Dipartimento Interateneo di Fisica “M. Merlin”Università degli studi di Bari “A. Moro”BariItaly
- Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
| | - Rosa Gemma Viterbo
- Department of Basic Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
| | - Arianna Consiglio
- National Research CouncilBari UnitInstitute of Biomedical TechnologiesBariItaly
| | - Paola Giordano
- General Paediatric Unit “B. Trambusti”, Azienda Policlinico‐Giovanni XXIIIUniversity of BariBariItaly
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica “M. Merlin”Università degli studi di Bari “A. Moro”BariItaly
- Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
| | - Maria Trojano
- Department of Basic Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| |
Collapse
|