1
|
Maschio M, Perversi F, Maialetti A. Brain tumor-related epilepsy: an overview on neuropsychological, behavioral, and quality of life issues and assessment methodology. Front Neurol 2024; 15:1480900. [PMID: 39722690 PMCID: PMC11668670 DOI: 10.3389/fneur.2024.1480900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a rare disease in which brain tumor (BT) and epilepsy overlap simultaneously and can have a negative impact on a patient's neuropsychological, behavioral, and quality of life (QoL) spheres. In this review we (a) addressed the main neuropsychological, behavioral, and QoL issues that may occur in BTRE patients, (b) described how BT, BTRE, and their respective treatments can impact these domains, and (c) identified tools and standardized evaluation methodologies specific for BTRE patients. Neuropsychological disorders and behavioral issues can be direct consequences of BTRE and all related treatments, such as surgery, anti-cancer and anti-seizure medication, corticosteroids, etc., which can alter the structure of specific brain areas and networks, and by emotional aspects reactive to BTRE diagnosis, including the possible loss of autonomy, poor prognosis, and fear of death. Unfortunately, it seems there is a lack of uniformity in assessment methodologies, such as the administration of different batteries of neuropsychological tests, different times, frames, and purposes. Further research is needed to establish causality and deepen our understanding of the interplay between all these variables and our intervention in terms of diagnosis, treatment, psychosocial assessment, and their timing. We propose that the care of these patients to rely on the concepts of "BTRE-induced disability" and "biopsychosocial model" of BTRE, to prompt healthcare providers to handle and monitor BTRE-related psychological and social aspects, as to maintain the patient's best possible QoL.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Maialetti
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Ehara T, Ohka F, Motomura K, Saito R. Epilepsy in Patients with Gliomas. Neurol Med Chir (Tokyo) 2024; 64:253-260. [PMID: 38839295 PMCID: PMC11304448 DOI: 10.2176/jns-nmc.2023-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 06/07/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a complication that significantly impairs the quality of life and course of treatment of patients with brain tumors. Several recent studies have shed further light on the mechanisms and pathways by which genes and biological molecules in the tumor microenvironment can cause epilepsy. Moreover, epileptic seizures have been found to promote the growth of brain tumors, making the control of epilepsy a critical factor in treating brain tumors. In this study, we summarize the previous research and recent findings concerning BTRE. Expectedly, a deeper understanding of the underlying genetic and molecular mechanisms leads to safer and more effective treatments for suppressing epileptic symptoms and tumor growth.
Collapse
Affiliation(s)
- Takuro Ehara
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
3
|
Strzelczyk A, Maschio M, Pensel MC, Coppola A, Takahashi S, Izumoto S, Trinka E, Cappucci S, Sainz-Fuertes R, Villanueva V. Perampanel for Treatment of People with a Range of Epilepsy Aetiologies in Clinical Practice: Evidence from the PERMIT Extension Study. Neurol Ther 2024; 13:825-855. [PMID: 38678505 PMCID: PMC11136933 DOI: 10.1007/s40120-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION It is important to assess the effectiveness of an antiseizure medication in treating different epilepsy aetiologies to optimise individualised therapeutic approaches. Data from the PERaMpanel pooled analysIs of effecTiveness and tolerability (PERMIT) Extension study were used to assess the effectiveness and safety/tolerability of perampanel (PER) when used to treat individuals with a range of epilepsy aetiologies in clinical practice. METHODS A post hoc analysis was conducted of PERMIT Extension data from individuals with a known aetiology. Retention was assessed after 3, 6 and 12 months. Effectiveness was assessed after 3, 6 and 12 months and at the last visit (last observation carried forward). Effectiveness assessments included responder rate (≥ 50% seizure frequency reduction) and seizure freedom rate (no seizures since at least the prior visit). Safety/tolerability was assessed by evaluating adverse events (AEs) and AEs leading to discontinuation. RESULTS PERMIT Extension included 1945 individuals with structural aetiology, 1012 with genetic aetiology, 93 with an infectious aetiology, and 26 with an immune aetiology. Retention rates at 12 months were 61.1% (structural), 65.9% (genetic), 56.8% (infectious) and 56.5% (immune). At the last visit, responder rates (total seizures) were 43.3% (structural), 68.3% (genetic), 37.0% (infectious) and 20.0% (immune), and corresponding seizure freedom rates were 15.8%, 46.5%, 11.1% and 5.0%, respectively. AE incidence rates were 58.0% (structural), 46.5% (genetic), 51.1% (infectious) and 65.0% (immune), and corresponding rates of discontinuation due to AEs over 12 months were 18.9%, 16.4%, 18.5% and 21.7%, respectively. The types of AEs reported were generally consistent across aetiology subgroups, with no idiosyncratic AEs emerging. CONCLUSION Although PER was effective and generally well tolerated when used to treat individuals with a range of epilepsy aetiologies in clinical practice, variability in its effectiveness and tolerability across the subgroups indicates that PER may be particularly useful for individuals with specific epilepsy aetiologies.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuroncology, IRCCS IFO Regina Elena National Cancer Institute, Rome, Italy
| | - Max C Pensel
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatological and Reproductive Sciences, Epilepsy Centre, Federico II University of Naples, Naples, Italy
| | - Satoru Takahashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Izumoto
- Department of Neurosurgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Eugen Trinka
- Department of Neurology, Centre for Cognitive Neuroscience, Member of EpiCARE, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Neuroscience Institute, Centre for Cognitive Neuroscience, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Institute of Public Health, Medical Decision-Making and HTA, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | | | | | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of EpiCARE, Valencia, Spain
| |
Collapse
|
4
|
Hino U, Tamura R, Kosugi K, Ezaki T, Karatsu K, Yamamoto K, Tomioka A, Toda M. Optimizing perampanel monotherapy for surgically resected brain tumors. Mol Clin Oncol 2024; 20:42. [PMID: 38756871 PMCID: PMC11097131 DOI: 10.3892/mco.2024.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Perampanel (PER) is an antiseizure medication (ASM) with a unique mechanism of action, which was approved in Japan for use in combination therapy in 2016 and as a monotherapy in 2020. It has exerted antitumor effects against several types of tumors in vitro. However, the efficacy of PER monotherapy for seizure control is not well-established in patients with brain tumor. In the present study, 25 patients with brain tumor treated using PER monotherapy at our institution were analyzed and compared with 45 patients treated using the most commonly prescribed ASM, levetiracetam (LEV). The PER group was younger and had a higher frequency of glioma cases. During drug administration, seizures were observed in two patients from the PER group (8.0%) and five patients from the LEV group (11.1%); however, the difference was not significant. The incidence of adverse effects did not significantly differ between the groups (12.0 and 2.2%, respectively). In the PER group, mild liver dysfunction was observed in two patients and drug rash in one. In the LEV group, a drug-induced rash was observed in one patient. PER monotherapy may be safe and effective for seizure treatment or prophylaxis in patients with brain tumor. Further large-scale clinical studies are warranted.
Collapse
Affiliation(s)
- Utaro Hino
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taketo Ezaki
- Department of Pharmacy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kosuke Karatsu
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kosei Yamamoto
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Azuna Tomioka
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Zhai W, Yu Q, Wu H. The efficacy and safety of novel antiepileptic drugs in treatment of epilepsy of patients with brain tumors. Front Neurol 2024; 15:1344775. [PMID: 38523608 PMCID: PMC10958780 DOI: 10.3389/fneur.2024.1344775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Objective This meta-analysis aimed to assess the effectiveness and safety of novel antiepileptic drugs (AEDs) in treating epilepsy in patients with brain tumors (BTRE). Methods A search was conducted on PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2023, with English language restriction. Results In this meta-analysis, 18 clinical trials involving 755 BTRE patients were included to assess the efficacy and safety of novel AEDs in BTRE treatment. At the last follow-up, a ≥50% reduction in seizure frequency was experienced by 72% of patients (random-effects model, 95% CI = 0.64-0.78) using novel AEDs. At the last follow-up, seizure freedom was experienced by 34% of patients (random-effects model, 95% CI = 0.28-0.41) using novel AEDs. The pooled incidence of AEs was found to be 19% (95% CI: 13%-26%), with a withdrawal rate due to adverse effects of only 3%. Comparable efficacy and incidence of adverse effects were observed between lacosamide and perampanel. Conclusion This meta-analysis suggests that novel antiepileptic drugs are deemed effective for seizure control in brain tumor patients, particularly when used as adjunctive therapy. Although lacosamide and perampanel received more focus in studies, no significant difference was observed in the efficacy and adverse reactions of these two drugs in seizure control. Further randomized controlled trials are deemed necessary to validate our findings.
Collapse
Affiliation(s)
- Weiwei Zhai
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Qiaoling Yu
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Huizhen Wu
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
6
|
Newton HB, Wojkowski J. Antiepileptic Strategies for Patients with Primary and Metastatic Brain Tumors. Curr Treat Options Oncol 2024; 25:389-403. [PMID: 38353859 PMCID: PMC10894758 DOI: 10.1007/s11864-024-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
OPINION STATEMENT Seizure activity is common in patients with primary and metastatic brain tumors, affecting more than 50% of cases over the course of their disease. Several mechanisms contribute to brain tumor-related epilepsy (BTRE), including a pro-inflammatory environment, excessive secretion of glutamate and an increase in neuronal excitatory tone, reduction of GABAergic inhibitory activity, and an increase in 2-hydroxygluturate production in isocitrate dehydrogenase mutant tumors. After a verified seizure in a brain tumor patient, the consensus is that BTRE has developed, and it is necessary to initiate an antiepileptic drug (AED). It is not recommended to initiate AED prophylaxis. Second- and third-generation AEDs are the preferred options for initiation, due to a lack of hepatic enzyme induction and reduced likelihood for drug-drug interactions, especially in regard to neoplastic treatment. The efficacy of appropriate AEDs for patients with BTRE is fairly equivalent, although some data suggests that levetiracetam may be slightly more active in suppressing seizures than other AEDs. The consensus among most Neuro-Oncology providers is to initiate levetiracetam monotherapy after a first seizure in a brain tumor patient, as long as the patient does not have any psychiatric co-morbidities. If levetiracetam is not tolerated well or is ineffective, other appropriate initial AED options for monotherapy or as an add-on anticonvulsant include lacosamide, valproic acid, briviracetam, lamotrigine, and perampanel.
Collapse
Affiliation(s)
- Herbert B Newton
- Neuro-Oncology Center and Brain Tumor Institute, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Hanna Hall 5th Floor, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Jenna Wojkowski
- Neuro-Oncology Center and Brain Tumor Institute, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Hanna Hall 5th Floor, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Pharmacy, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Cleveland, OH, USA
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Heuer S, Burghaus I, Gose M, Kessler T, Sahm F, Vollmuth P, Venkataramani V, Hoffmann D, Schlesner M, Ratliff M, Hopf C, Herrlinger U, Ricklefs F, Bendszus M, Krieg SM, Wick A, Wick W, Winkler F. PerSurge (NOA-30) phase II trial of perampanel treatment around surgery in patients with progressive glioblastoma. BMC Cancer 2024; 24:135. [PMID: 38279087 PMCID: PMC10811925 DOI: 10.1186/s12885-024-11846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION EU-CT number: 2023-503938-52-00 30.11.2023.
Collapse
Affiliation(s)
- Sophie Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ina Burghaus
- Coordination Centre for Clinical Trials (KKS) Heidelberg, 69120, Heidelberg, Germany
| | - Maria Gose
- Coordination Centre for Clinical Trials (KKS) Heidelberg, 69120, Heidelberg, Germany
| | - Tobias Kessler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, INF 224, 69120, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Geman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dirk Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Matthias Schlesner
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Neurosurgery Clinic, University Hospital Mannheim, 68167, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology and Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Hattori EY, Arakawa Y, Mineharu Y, Furukawa K, Terada Y, Yamao Y, Tanji M, Kikuchi T, Miyamoto S. Seizure control by adding on other anti-seizure medication on seizure during levetiracetam administration in patients with glioma-related epilepsy. BMC Cancer 2023; 23:849. [PMID: 37697277 PMCID: PMC10496310 DOI: 10.1186/s12885-023-11273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Epilepsy is a major symptom in patients with glioma. Levetiracetam (LEV) is recognized as a first-line treatment for glioma-related epilepsy. Increasing the LEV dose is allowed into patients with seizure occurrence against its initial dose. However, the therapeutic efficacy of increasing the LEV dose in response to seizure occurrence remains unclear. METHODS We retrospectively analyzed 236 glioma patients who were treated with antiseizure medications (ASMs) internally at our institute between September 2010 and December 2017. Of these, the analysis focused on 156 patients treated with LEV who had a clear history of administration. RESULTS Seizure occurrences were observed in 21 of 75 patients (26.7%) who received LEV as first-line therapy and in 33 of 81 patients (40.7%) who received LEV as non-first-line treatment. The seizure control rate for seizure occurrence with LEV as first-line treatment was significantly higher in patients treated with addition of other ASMs (72.7%) than in those treated with increasing dose of LEV (20.0%) (p = 0.016). The seizure control rate for seizure occurrence with LEV as non-first-line treatment did not differ significantly between patients with addition of other ASMs (58.3%) and those treated with increasing dose of LEV (47.6%) (p = 0.554). CONCLUSIONS Adding other ASMs was more effective than increasing the LEV dose for seizure control in patients treated with LEV as first-line treatment, but they demonstrated comparable efficacy in patients treated with LEV as non-first-line treatment.
Collapse
Affiliation(s)
- Etsuko Yamamoto Hattori
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan.
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | | | - Yukinori Terada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Perversi F, Costa C, Labate A, Lattanzi S, Liguori C, Maschio M, Meletti S, Nobili L, Operto FF, Romigi A, Russo E, Di Bonaventura C. The broad-spectrum activity of perampanel: state of the art and future perspective of AMPA antagonism beyond epilepsy. Front Neurol 2023; 14:1182304. [PMID: 37483446 PMCID: PMC10359664 DOI: 10.3389/fneur.2023.1182304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glutamate is the brain's main excitatory neurotransmitter. Glutamatergic neurons primarily compose basic neuronal networks, especially in the cortex. An imbalance of excitatory and inhibitory activities may result in epilepsy or other neurological and psychiatric conditions. Among glutamate receptors, AMPA receptors are the predominant mediator of glutamate-induced excitatory neurotransmission and dictate synaptic efficiency and plasticity by their numbers and/or properties. Therefore, they appear to be a major drug target for modulating several brain functions. Perampanel (PER) is a highly selective, noncompetitive AMPA antagonist approved in several countries worldwide for treating different types of seizures in various epileptic conditions. However, recent data show that PER can potentially address many other conditions within epilepsy and beyond. From this perspective, this review aims to examine the new preclinical and clinical studies-especially those produced from 2017 onwards-on AMPA antagonism and PER in conditions such as mesial temporal lobe epilepsy, idiopathic and genetic generalized epilepsy, brain tumor-related epilepsy, status epilepticus, rare epileptic syndromes, stroke, sleep, epilepsy-related migraine, cognitive impairment, autism, dementia, and other neurodegenerative diseases, as well as provide suggestions on future research agenda aimed at probing the possibility of treating these conditions with PER and/or other AMPA receptor antagonists.
Collapse
Affiliation(s)
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Neurological Clinic, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome ‘Tor Vergata”, Rome, Italy
- Epilepsy Center, Neurology Unit, University Hospital “Tor Vergata”, Rome, Italy
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Meletti
- Neurology Department, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genova, Genova, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Romigi
- Sleep Medicine Center, Neurological Mediterranean Institute IRCCS Neuromed, Pozzilli, Italy
- Psychology Faculty, International Telematic University Uninettuno, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Hou L, Yang J, Zhang X, Li N, Li S, Zhang L, Zhao J, Wang Q. Efficacy and tolerability of perampanel in patients with seizures in real-world clinical practice: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1139514. [PMID: 37056989 PMCID: PMC10086234 DOI: 10.3389/fphar.2023.1139514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Objectives: The aim of this study was to systematically review the efficacy and tolerability of perampanel (PER) when used as add-on treatment or monotherapy in patients with epilepsy aged 12 years and older in routine clinical practice.Methods: Electronic and clinical trials databases were searched for observational studies of PER published up to 1 March 2022. The outcomes of interest were responder rates, adverse effects (AEs), and withdrawal rates. Subgroup analyses were performed to explore the potential factors that might affect the efficacy and safety of PER usage.Results: A total of 56 studies, which included 10,688 patients, were enrolled. The results showed that after 3, 6, and 12 months of PER treatment, the pooled 50% responder rates in patients with epilepsy were 50.0% (95% CI: 0.41–0.60), 44.0% (95% CI: 0.38–0.50), and 39.0% (95% CI: 0.31–0.48), respectively, and the pooled seizure-free rates were 24.0% (95% CI: 0.17–0.32), 21.0% (95% CI: 0.17–0.25), and 20.0% (95% CI: 0.16–0.24), respectively. Subgroup analyses revealed that the efficacy of PER could be affected by the way in which PER is administrated. Patients in the groups where PER was used as the first add-on, primary monotherapy, or combined with non–enzyme-inducing AEDs (non-EIAEDs) displayed a high 50% responder rate and seizure-free rate when compared with those in the late add-on, conversion therapy, or combined with the EIAEDs groups, respectively. Furthermore, the incidences of AEs at 3, 6, and 12 months of PER treatment were 46% (95% CI: 0.38–0.55), 52.0% (95% CI: 0.43–0.60), and 46.0% (95% CI: 0.40–0.52), respectively. The withdrawal rates due to AEs were 8.0% (95% CI: 0.06–0.11), 16.0% (95% CI: 0.13–0.20), and 16% (95% CI: 0.11–0.21) at 3, 6, and 12 months of PER treatment, respectively. Subgroup analyses showed a higher withdrawal rate in the rapid (30%, 95% CI: 0.22–0.38) than in the slow (12%, 95% CI: 0.06–0.18) titration group.Conclusion: Altogether, PER was effective and could be fairly tolerated in both short-term and long-term usage in patients with epilepsy in routine clinical practice. Furthermore, PER appeared to be more effective when PER was used as the first add-on, monotherapy, or concomitant with non-EIAEDs.Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022384532.
Collapse
Affiliation(s)
- Liyan Hou
- Dalian Medical University Library, Dalian Medical University, Dalian, China
| | - Jingjing Yang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development R & D of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development R & D of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development R & D of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lei Zhang
- Dalian Medical University Library, Dalian Medical University, Dalian, China
- *Correspondence: Lei Zhang, ; Jie Zhao, ; Qingshan Wang,
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development R & D of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Lei Zhang, ; Jie Zhao, ; Qingshan Wang,
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development R & D of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- School of Public Health, Dalian Medical University, Dalian, China
- *Correspondence: Lei Zhang, ; Jie Zhao, ; Qingshan Wang,
| |
Collapse
|
11
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
12
|
Efficacy and Tolerability of Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review. Biomedicines 2023; 11:biomedicines11030651. [PMID: 36979629 PMCID: PMC10045654 DOI: 10.3390/biomedicines11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Epilepsy is a frequent comorbidity in patients with brain tumors, in whom seizures are often drug-resistant. Current evidence suggests that excess of glutamatergic activity in the tumor microenvironment may favor epileptogenesis, but also tumor growth and invasiveness. The selective non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist perampanel (PER) was demonstrated to be efficacious and well-tolerated in patients with focal seizures. Moreover, preclinical in vitro studies suggested a potential anti-tumor activity of this drug. In this systematic review, the clinical evidence on the efficacy and tolerability of PER in brain tumor-related epilepsy (BTRE) is summarized. (2) Methods: Five databases and two clinical trial registries were searched from inception to December 2022. (3) Results: Seven studies and six clinical trials were included. Sample size ranged from 8 to 36 patients, who received add-on PER (mean dosage from 4 to 7 mg/day) for BTRE. After a 6–12 month follow-up, the responder rate (% of patients achieving seizure freedom or reduction ≥ 50% of seizure frequency) ranged from 75% to 95%, with a seizure freedom rate of up to 94%. Regarding tolerability, 11–52% of patients experienced non-severe adverse effects (most frequent: dizziness, vertigo, anxiety, irritability). The retention rate ranged from 56% to 83%. However, only up to 12.5% of patients discontinued the drug because of the adverse events. (4) Conclusions: PER seems to be efficacious, safe, and well-tolerated in patients with BTRE. Further randomized studies should be conducted in more homogeneous and larger populations, also evaluating the effect of PER on tumor progression, overall survival, and progression-free survival.
Collapse
|
13
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
14
|
Tabaee Damavandi P, Pasini F, Fanella G, Cereda GS, Mainini G, DiFrancesco JC, Trinka E, Lattanzi S. Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review. Brain Sci 2023; 13:brainsci13020326. [PMID: 36831869 PMCID: PMC9954094 DOI: 10.3390/brainsci13020326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a common comorbidity in patients with brain neoplasms and it may be either the first symptom or develop after the tumor diagnosis. Increasing evidence suggests that brain tumors and BTRE share common pathophysiological mechanisms. Glutamatergic mechanisms can play a central role in promoting both primary brain tumor growth and epileptogenesis. Perampanel (PER), which acts as a selective antagonist of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, may play a role both in the reduction in tumor growth and the control of epileptiform activity. This systematic review aimed to summarize the pre-clinical and clinical evidence about the antitumor properties, antiseizure effects and tolerability of PER in BTRE. Eight pre-clinical and eight clinical studies were identified. The currently available evidence suggests that PER can be an effective and generally well-tolerated therapeutic option in patients with BTRE. In vitro studies demonstrated promising antitumor activity of PER, while no role in slowing tumor progression has been demonstrated in rat models; clinical data on the potential antitumor activity of PER are scarce. Additional studies are needed to explore further the effects of PER on tumor progression and fully characterize its potentialities in patients with BTRE.
Collapse
Affiliation(s)
- Payam Tabaee Damavandi
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Francesco Pasini
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gaia Fanella
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Sofia Cereda
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gabriele Mainini
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Jacopo C DiFrancesco
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, 5020 Salzburg, Austria
- Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60020 Ancona, Italy
| |
Collapse
|
15
|
Fairclough S, Goodden J, Chumas P, Mathew R, Maguire M. Levetiracetam as a first-line antiseizure medication in WHO grade 2 glioma: Time to seizure freedom and rates of treatment failure. Epilepsia 2023; 64:857-865. [PMID: 36636895 DOI: 10.1111/epi.17508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The high seizure burden seen in World Health Association (WHO) grade 2 gliomas is well documented. This study aims to identify factors that influence the probability of seizure freedom (12 months of seizure remission) and treatment failure (antiseizure medication [ASM] cessation or introduction of an alternative) in patients with WHO grade 2 glioma. METHODS This is a retrospective observational analysis of patients from a regional UK neurosurgical center with histologically proven (n = 146) WHO grade 2 glioma and brain tumor related epilepsy. Statistical analyses using both Kaplan-Meier and Cox proportional hazards models were undertaken, with a particular focus on treatment outcomes when the commonly prescribed ASM levetiracetam (n = 101) is used as first line. RESULTS Treatment with levetiracetam as a first-line ASM resulted in a significant increase in the probability of seizure freedom (p < .05) at 2 years compared with treatment with an alternative ASM. Individuals presenting with focal seizures without bilateral tonic-clonic progression were between 39% and 42% significantly less likely to reach seizure freedom within 10 years (p < .05) and 132% more likely to fail treatment by 5 years (p < .01) when compared to individuals who had seizures with progression to bilateral tonic-clonic activity. ASM choice did not significantly affect treatment failure rates. SIGNIFICANCE More than two-thirds of patients with WHO grade 2 glioma related epilepsy treated with levetiracetam first line achieve seizure freedom within 2 years and it is a reasonable first-choice agent. Experiencing mainly focal seizures without progression infers a significant long-term reduction in the chance of seizure freedom. Further studies are needed to inform ASM selection.
Collapse
Affiliation(s)
- Sam Fairclough
- Adult Neurology, Leeds Teaching Hospitals, Leeds, UK.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John Goodden
- Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Paul Chumas
- Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Ryan Mathew
- Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Melissa Maguire
- Adult Neurology, Leeds Teaching Hospitals, Leeds, UK.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Sánchez-Villalobos JM, Aledo-Serrano Á, Villegas-Martínez I, Shaikh MF, Alcaraz M. Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol 2022; 13:991244. [PMID: 36278161 PMCID: PMC9583251 DOI: 10.3389/fphar.2022.991244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy represents a challenge in the management of patients with brain tumors. Epileptic seizures are one of the most frequent comorbidities in neuro-oncology and may be the debut symptom of a brain tumor or a complication during its evolution. Epileptogenic mechanisms of brain tumors are not yet fully elucidated, although new factors related to the underlying pathophysiological process with possible treatment implications have been described. In recent years, the development of new anti-seizure medications (ASM), with better pharmacokinetic profiles and fewer side effects, has become a paradigm shift in many clinical scenarios in neuro-oncology, being able, for instance, to adapt epilepsy treatment to specific features of each patient. This is crucial in several situations, such as patients with cognitive/psychiatric comorbidity, pregnancy, or advanced age, among others. In this narrative review, we provide a rationale for decision-making in ASM choice for neuro-oncologic patients, highlighting the strengths and weaknesses of each drug. In addition, according to current literature evidence, we try to answer some of the most frequent questions that arise in daily clinical practice in patients with epilepsy related to brain tumors, such as, which patients are the best candidates for ASM and when to start it, what is the best treatment option for each patient, and what are the major pitfalls to be aware of during follow-up.
Collapse
Affiliation(s)
- José Manuel Sánchez-Villalobos
- Department of Neurology, University Hospital Complex of Cartagena, Murcia, Spain
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Ángel Aledo-Serrano
- Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano,
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Miguel Alcaraz
- Department of Radiology and Physical Medicine, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U, Grönheit W. Brain tumor related epilepsy: pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract 2022; 4:45. [PMID: 36059029 PMCID: PMC9442934 DOI: 10.1186/s42466-022-00205-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brain tumor related epilepsy (BTRE) is a common complication of cerebral tumors and its incidence is highly dependent on the type of tumor, ranging from 10–15% in brain metastases to > 80% in low grade gliomas. Clinical management is challenging and has to take into account aspects beyond the treatment of non-tumoral epilepsy. Main body Increasing knowledge about the pathophysiology of BTRE, particularly on glutamatergic mechanisms of oncogenesis and epileptogenesis, might influence management of anti-tumor and BTRE treatment in the future. The first seizure implies the diagnosis of epilepsy in patients with brain tumors. Due to the lack of prospective randomized trials in BTRE, general recommendations for focal epilepsies currently apply concerning the initiation of antiseizure medication (ASM). Non-enzyme inducing ASM is preferable. Prospective trials are needed to evaluate, if AMPA inhibitors like perampanel possess anti-tumor effects. ASM withdrawal has to be weighed very carefully against the risk of seizure recurrence, but can be achievable in selected patients. Permission to drive is possible for some patients with BTRE under well-defined conditions, but requires thorough neurological, radiological, ophthalmological and neuropsychological examination.
Conclusion An evolving knowledge on pathophysiology of BTRE might influence future therapy. Randomized trials on ASM in BTRE with reliable endpoints are needed. Management of withdrawal of ASMs and permission to drive demands thorough diagnostic as well as neurooncological and epileptological expertise.
Collapse
|
18
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
19
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
20
|
Tilz C. [Epilepsy in the elderly]. Dtsch Med Wochenschr 2022; 147:669-675. [PMID: 35636417 DOI: 10.1055/a-1664-1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The incidence rate of epilepsy has importantly increased during the last decades due to the rising expectation of life. Special clinical aspects have to be considered for the correct diagnosis and differential diagnosis of epileptic seizures in the elderly: On one hand, the etiology of epilepsy in the elderly is different from epilepsies of younger people with a higher rate of symptomatic epilepsies compared to younger people. On the other hand, seizures are more often clinically inconclusive as they frequently appear without motor symptoms and therefore require an accurate diagnostic differentiation from other attacks of unconsciousness. The most accurate diagnostic tool for the correct diagnosis of such seizures is the registration of the seizures by longtime-video-EEG-monitoring (LTVEM). If LTVEM cannot be performed also home-video-registration could be useful. Medical treatment of epilepsies in the elderly has to be done with special consideration of comorbidity and metabolic changes in this age group.
Collapse
Affiliation(s)
- Christian Tilz
- Klinik für Neurologie, Epileptologie, Krankenhaus Barmherzige Brüder Regensburg
| |
Collapse
|
21
|
Fong YO, Huang P, Hsu CY, Yang YH. Effects of Perampanel on Seizure Control, Cognition, Behavior, and Psychological Status in Patients With Epilepsy: A Systematic Review. J Clin Neurol 2022; 18:653-662. [DOI: 10.3988/jcn.2022.18.6.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Poyin Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung Yao Hsu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Colleague of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Witt JA, Helmstaedter C. The impact of perampanel on cognition: A systematic review of studies employing standardized tests in patients with epilepsy. Seizure 2021; 94:107-111. [PMID: 34890976 DOI: 10.1016/j.seizure.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
This systematic review was conducted to reveal the cognitive effects of perampanel (PER) as assessed by objective standardized neuropsychological measures in patients with epilepsy. A systematic literature search was performed in PubMed. In addition we cross-checked a list of relevant studies (based on a ProQuest search) provided by Eisai GmbH. Eligibility criteria were (1) group studies reporting the cognitive outcome of treatment with PER in patients with epilepsy (2) which employed objective cognitive tests and (3) were published in English. Of the 56 initially retrieved records, 9 eligible studies were included in the qualitative synthesis. Two studies were based on the very same sample. Altogether the included studies analyzed a total of 241 patients (46% pediatric) with adjunctive PER. All studies were longitudinal with assessments before and after introduction of PER (up to 5 follow-ups and observation intervals of up to 1 year). Two studies were retrospective, 6 lacked a control condition. Neuropsychological assessments varied in extent and test selection. Overall no systematic cognitive deteriorations or improvements after introduction of PER have been reported across the analyzed studies. The only randomized placebo-controlled trial found a transient worsening in attention and speed of memory at the 19-week follow-up, and in addition a late decline in another parameter of attention at the final 52-week follow-up. This systematic review on the objective cognitive effects of PER suggests an overall neutral cognitive profile of PER with no systematic cognitive deteriorations or improvements. More controlled studies on the cognitive effects of PER would be appreciated.
Collapse
|
23
|
de Bruin ME, van der Meer PB, Dirven L, Taphoorn MJB, Koekkoek JAF. Efficacy of antiepileptic drugs in glioma patients with epilepsy: a systematic review. Neurooncol Pract 2021; 8:501-517. [PMID: 34589231 PMCID: PMC8475226 DOI: 10.1093/nop/npab030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Comprehensive data on the efficacy and tolerability of antiepileptic drugs (AED) treatment in glioma patients with epilepsy are currently lacking. In this systematic review, we specifically assessed the efficacy of AEDs in patients with a grade II-IV glioma. Methods Electronic databases PubMed/MEDLINE, EMBASE, Web of Science, and Cochrane Library were searched up to June 2020. Three different outcomes for both mono- and polytherapy were extracted from all eligible articles: (i) seizure freedom; (ii) ≥50% reduction in seizure frequency; and (iii) treatment failure. Weighted averages (WA) were calculated for outcomes at 6 and 12 months. Results A total of 66 studies were included. Regarding the individual outcomes on the efficacy of monotherapy, the highest seizure freedom rate at 6 months was with phenytoin (WA = 72%) while at 12-month pregabalin (WA = 75%) and levetiracetam (WA = 74%) showed highest efficacy. Concerning ≥50% seizure reduction rates, levetiracetam showed highest efficacy at 6 and 12 months (WAs of 82% and 97%, respectively). However, treatment failure rates at 12 months were highest for phenytoin (WA = 34%) and pregabalin (41%). When comparing the described polytherapy combinations with follow-up of ≥6 months, levetiracetam combined with phenytoin was most effective followed by levetiracetam combined with valproic acid. Conclusion Given the heterogeneous patient populations and the low scientific quality across the different studies, seizure rates need to be interpreted with caution. Based on the current limited evidence, with the ranking of AEDs being confined to the AEDs studied, levetiracetam, phenytoin, and pregabalin seem to be most effective as AED monotherapy in glioma patients with epilepsy, with levetiracetam showing the lowest treatment failure rate, compared to the other AEDs studied.
Collapse
Affiliation(s)
| | - Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Synergistic Effect of Perampanel and Temozolomide in Human Glioma Cell Lines. J Pers Med 2021; 11:jpm11050390. [PMID: 34068749 PMCID: PMC8150827 DOI: 10.3390/jpm11050390] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is characterized by a high proliferative rate and drug resistance. The standard of care includes maximal safe surgery, followed by radiotherapy and temozolomide chemotherapy. The expression of glutamate receptors has been previously reported in human glioma cell lines. The aim of this study was to examine the cellular effects of perampanel, a broad-spectrum antiepileptic drug acting as an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) glutamate receptor antagonist, alone or in combination with temozolomide. Four human glioma cell lines were exposed to different concentrations of perampanel and temozolomide, alone or in combination. The type of drug interaction was assessed using the Chou-Talalay method. Apoptosis, cell cycle perturbation, and glutamate receptors (GluRs) subunit expression were assessed by flow cytometry. Perampanel significantly inhibited the growth, inducing high levels of apoptosis. A strong synergistic effect of the combination of perampanel with temozolomide was detected in U87 and A172, but not in U138. Treatment with perampanel resulted in an increased GluR2/3 subunit expression in U87 and U138. Perampanel displays a pro-apoptotic effect on human glioblastoma cell lines when used alone, possibly due to increased GluR2/3 expression. The observed synergistic effect of the combination of temozolomide with perampanel suggests further investigation on the impact of this combination on oncologic outcomes in glioblastoma.
Collapse
|
25
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
26
|
Perampanel in brain tumor and SMART-syndrome related epilepsy - A single institutional experience. J Neurol Sci 2021; 423:117386. [PMID: 33706200 DOI: 10.1016/j.jns.2021.117386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
Epilepsy is common in patients with brain tumors and frequently presents as the first clinical manifestation of an underlying tumor. Despite a number of available antiepileptic drugs (AED), brain tumor related epilepsy (BTRE) may still be difficult to control. Recently, the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptor antagonist perampanel (PER) is increasingly acknowledged as an attractive novel add-on AED for seizure control in BTRE. We present a single institutional experience reporting five individual cases with refractory BTRE treated with PER. In two of these five brain tumor patients, worsening of seizure control was caused by SMART-syndrome (stroke-like migraine attacks after radiation therapy). Efficacy of PER was assessed by the responder rate and by evaluating overall changes in seizure frequency before and during PER treatment. In our case series, a reduction in seizure frequency was observed in four out of five patients and the responder rate was 40%. In addition, both cases with symptomatic epilepsy associated with SMART-syndrome were successfully treated with PER. This case series supports the growing evidence that PER may become a promising add-on AED for the treatment of refractory BTRE as well as for seizure control in SMART-syndrome.
Collapse
|
27
|
Davis Jones G, Stavropoulos I, Ibrahim K, Tristram M, Neale M, Jory C, Adcock J, Esposito M, Hamandi K, Shankar R, Rugg-Gunn F, Elwes R, Sen A. An evaluation of the effectiveness of perampanel in people with epilepsy who have previously undergone resective surgery and/or implantation of a vagal nerve stimulator. Epilepsy Behav 2021; 116:107738. [PMID: 33517199 DOI: 10.1016/j.yebeh.2020.107738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
About 30% of people with epilepsy (PWE) are drug-resistant. Those with focal seizures may be suitable for epilepsy surgery. Those not amenable to resective surgery can be considered for vagus nerve stimulation (VNS). However, after operative procedures, around 50% of patients continue to experience seizures. A multi-center retrospective study assessing perampanel effectiveness and tolerability for PWE who have undergone surgical resection and/or VNS implantation was performed. The primary outcome was ≥50% reduction in seizure frequency while secondary outcomes included side effects (SEs), dose-related effectiveness, and toxicity. The median perampanel dose was 6 mg. Only one PWE became seizure free. A ≥50% decrease in seizure frequency was observed in 52.8% of the post-resection group and 16.9% of the VNS group (p < 0.001), while SEs were seen in 44.8% and 41.1%, respectively. Perampanel doses greater than 8 mg led to better response in both groups, especially in the post-VNS cohort. SEs were not dose-related and the safety profile was similar to previous observational studies. Perampanel can be beneficial in these two super-refractory epilepsy groups, particularly in PWE with seizures after surgical resection. Doses of more than 8 mg appear to be well tolerated and may be more effective than lower doses in PWE after surgical interventions.
Collapse
Affiliation(s)
- Gabriel Davis Jones
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Kareem Ibrahim
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - Maggie Tristram
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - Marcus Neale
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - Caryn Jory
- Cornwall Partnership NHS Foundation Trust, Threemilestone Industrial Estate, Truro, UK
| | - Jane Adcock
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - Michelle Esposito
- The Welsh Epilepsy Centre, Department of Neurology, University Hospital of Wales, Cardiff CF144XW, UK
| | - Khalid Hamandi
- The Welsh Epilepsy Centre, Department of Neurology, University Hospital of Wales, Cardiff CF144XW, UK
| | - Rohit Shankar
- Cornwall Partnership NHS Foundation Trust, Threemilestone Industrial Estate, Truro, UK; University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK
| | - Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, and UCL Institute of Neurology, London, UK
| | - Robert Elwes
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
28
|
Moon J, Kim MS, Kim YZ, Hwang K, Park JE, Kim KH, Cho JM, Yoon WS, Kim SH, Kim YI, Kim HS, Dho YS, Park JS, Yoon HI, Seo Y, Sung KS, Song JH, Wee CW, Lee MH, Han MH, Hong JB, Im JH, Lee SH, Chang JH, Lim DH, Park CK, Lee YS, Gwak HS. The Korean Society for Neuro-Oncology (KSNO) Guideline for Antiepileptic Drug Usage of Brain Tumor: Version 2021.1. Brain Tumor Res Treat 2021; 9:9-15. [PMID: 33913266 PMCID: PMC8082286 DOI: 10.14791/btrt.2021.9.e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background To date, there has been no practical guidelines for the prescription of antiepileptic drugs (AEDs) in brain tumor patients in Korea. Thus, the Korean Society for Neuro-Oncology (KSNO), a multidisciplinary academic society, had begun preparing guidelines for AED usage in brain tumors since 2019. Methods The Working Group was composed of 27 multidisciplinary medical experts in Korea. References were identified through searches of PubMed, MEDLINE, EMBASE, and Cochrane CENTRAL using specific and sensitive keywords as well as combinations of the keywords. Results The core contents are as follows. Prophylactic AED administration is not recommended in newly diagnosed brain tumor patients without previous seizure history. When AEDs are administered during peri/postoperative period, it may be tapered off according to the following recommendations. In seizure-naïve patients with no postoperative seizure, it is recommended to stop or reduce AED 1 week after surgery. In seizure-naïve patients with one early postoperative seizure (<1 week after surgery), it is advisable to maintain AED for at least 3 months before tapering. In seizure-naïve patients with ≥2 postoperative seizures or in patients with preoperative seizure history, it is recommended to maintain AEDs for more than 1 year. The possibility of drug interactions should be considered when selecting AEDs in brain tumor patients. Driving can be allowed in brain tumor patients when proven to be seizure-free for more than 1 year. Conclusion The KSNO suggests prescribing AEDs in patients with brain tumor based on the current guideline. This guideline will contribute to spreading evidence-based prescription of AEDs in brain tumor patients in Korea.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Genomic Medicine, Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Min Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Mo Cho
- Department of Neurosurgery, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Wan Soo Yoon
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Il Kim
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jae Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Youngbeom Seo
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Min Ho Lee
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Myung Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Se Hoon Lee
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Marry's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Ho Shin Gwak
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| | | |
Collapse
|
29
|
Maschio M, Zarabla A, Maialetti A, Giannarelli D, Koudriavtseva T, Villani V, Zannino S. Perampanel in brain tumor-related epilepsy: Observational pilot study. Brain Behav 2020; 10:e01612. [PMID: 32285623 PMCID: PMC7303381 DOI: 10.1002/brb3.1612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Possible loss of efficacy and potential interactions between antiepileptic drugs (AEDs) and chemotherapy could complicate the management of patients with brain tumor-related epilepsy (BTRE) that may expose patients to an increased risk of adverse events. Perampanel (PER) is a highly selective, noncompetitive, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptor antagonist. This study evaluates the effectiveness, QoL, cognition, and mood of PER in add-on therapy in BTRE patients. MATERIAL AND METHODS Observational pilot study on the effectiveness of PER as add-on therapy in BTRE patients with uncontrolled seizures with a 6-month follow-up. RESULTS We recruited 26 BTRE patients. During the follow-up, 16 underwent chemotherapy and 11 radiotherapy; 11 had disease progression. Five patients dropped out. Mean daily PER dosage was 6.6 mg in the 21 patients who completed the follow-up and 6.4 mg in the ITT population. The mean number of seizures/month decreased from 10.8 ± 15.03 at baseline to 1.7 ± 4.34 in the 21 patients who reached the final follow-up. Responder rate was 88.4%: Eight patients were seizure-free, 15 had ≥50% seizure reduction, and 3 remained stable. Four patients (15.4%) reported AEs: 2 required PER dose reduction, and 2 dropped out. Neuropsychological, mood, and QoL questionnaires were not statistically different compared to baseline. There were no significant differences in seizure control in patients with/without IDH1 mutation and with/without MGMT methylation. CONCLUSIONS Perampanel proved to be effective on seizure control in BRTE patients and to be well tolerated without negative effects on cognition and QoL. Perampanel could be a valid therapeutic option in BTRE.
Collapse
Affiliation(s)
- Marta Maschio
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ Center for Tumor‐Related Epilepsy ‐ UOSD NeuroncologyRomeItaly
| | - Alessia Zarabla
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ Center for Tumor‐Related Epilepsy ‐ UOSD NeuroncologyRomeItaly
| | - Andrea Maialetti
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ Center for Tumor‐Related Epilepsy ‐ UOSD NeuroncologyRomeItaly
| | - Diana Giannarelli
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ Biostatistic UnitRomeItaly
| | - Tatiana Koudriavtseva
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ UOSD NeuroncologyRomeItaly
| | - Veronica Villani
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ UOSD NeuroncologyRomeItaly
| | - Silvana Zannino
- Regina Elena Institute for Hospitalization and Care ScientificIRCCS ‐ UOSD NeuroncologyRomeItaly
| |
Collapse
|