1
|
Balkrishna A, Sinha S, Bhattacharya K, Varshney A. Twenty-eight days of repeated dose sub-acute toxicological evaluation of polyherbal Ayurvedic medicine BPGrit in Sprague-Dawley rats. J Appl Toxicol 2024; 44:1372-1387. [PMID: 38741393 DOI: 10.1002/jat.4625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
A pre-clinical toxicological evaluation of herbal medicines is necessary to identify any underlying health-associated side effects, if any. BPGrit is an Ayurveda-based medicine prescribed for treating hypertensive conditions. High-performance liquid chromatography-based analysis revealed the presence of gallic acid, ellagic acid, coumarin, cinnamic acid, guggulsterone E, and guggulsterone Z in BPGrit. For sub-acute toxicity analysis of BPGrit, male and female Sprague-Dawley rats were given repeated oral gavage at 100, 300, and 1000 mg/kg body weight/day dosages for 28 days, followed by a 14-day recovery phase. No incidences of mortality, morbidity, or abnormal clinical signs were observed in BPGrit-treated rats throughout the study period. Also, the body weight and food consumption habits of the experimental animals did not change during the study duration. Hematological, biochemical, and histopathological analysis did not indicate any abnormal changes occurring in the BPGrit-treated rats up to the highest tested dose of 1000 mg/kg body weight/day. Finally, the study established the "no-observed-adverse-effect level" for BPGrit at >1000 mg/kg body weight/day in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, UK
- Vedic Acharya Samaj Foundation Inc., NFP 21725 CR 33, Groveland, Florida, USA
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Shao X, Guo F, Kim J, Ress D, Zhao C, Shou Q, Jann K, Wang DJJ. Laminar multi-contrast fMRI at 7T allows differentiation of neuronal excitation and inhibition underlying positive and negative BOLD responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305167. [PMID: 39040201 PMCID: PMC11261924 DOI: 10.1101/2024.04.01.24305167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing 'double-peak' laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - JungHwan Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
3
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
4
|
Hanna C, Yao R, Sajjad M, Gold M, Blum K, Thanos PK. Exercise Modifies the Brain Metabolic Response to Chronic Cocaine Exposure Inhibiting the Stria Terminalis. Brain Sci 2023; 13:1705. [PMID: 38137153 PMCID: PMC10742065 DOI: 10.3390/brainsci13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
It is well known that exercise promotes health and wellness, both mentally and physiologically. It has been shown to play a protective role in many diseases, including cardiovascular, neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and [18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved in sensory processing, fear and stress responses, reward/addiction, and movement. These results show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions associated with emotion, behavior, and the brain reward cascade. This supports previous findings of the potential for aerobic exercise to alter the brain's response to drugs of abuse, providing targets for future investigation. These results can provide insights into the fields of exercise neuroscience, psychiatry, and addiction research.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine. J Pers Med 2022; 12:jpm12121976. [PMID: 36556197 PMCID: PMC9788493 DOI: 10.3390/jpm12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise, a proven method of boosting health and wellness, is thought to act as a protective factor against many neurological and psychological diseases. Recent studies on exercise and drug exposure have pinpointed some of the neurological mechanisms that may characterize this protective factor. Using positron emission tomography (PET) imaging techniques and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), our team sought to identify how chronic aerobic exercise modulates brain glucose metabolism (BGluM) after drug-naïve rats were exposed to an acute dose of cocaine. Using sedentary rats as a control group, we observed significant differences in regional BGluM. Chronic treadmill exercise treatment coupled with acute cocaine exposure induced responses in BGluM activity in the following brain regions: postsubiculum (Post), parasubiculum (PaS), granular and dysgranular insular cortex (GI and DI, respectively), substantia nigra reticular (SNR) and compact part dorsal tier (SNCD), temporal association cortex (TeA), entopenduncular nucleus (EP), and crus 1 of the ansiform lobule (crus 1). Inhibition, characterized by decreased responses due to our exercise, was found in the ventral endopiriform nucleus (VEn). These areas are associated with memory and various motor functions. They also include and share connections with densely dopaminergic areas of the mesolimbic system. In conclusion, these findings suggest that treadmill exercise in rats mediates brain glucose response to an acute dose of cocaine differently as compared to sedentary rats. The modulated brain glucose utilization occurs in brain regions responsible for memory and association, spatial navigation, and motor control as well as corticomesolimbic regions related to reward, emotion, and movement.
Collapse
|
6
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
7
|
Podgorac J, Sekulić S, Petković B, Stojadinović G, Martać L, Pešić V. The influence of continuous prenatal exposure to valproic acid on physical, nociceptive, emotional and psychomotor responses during adolescence in mice: Dose-related effects within sexes. Front Behav Neurosci 2022; 16:982811. [PMID: 36248030 PMCID: PMC9557044 DOI: 10.3389/fnbeh.2022.982811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Clinical findings show that the use of valproic acid (VPA) during pregnancy increases the risk of birth defects and autism spectrum disorder in offspring. Although there is a consensus that monitoring of potential long-term outcomes of VPA exposure is needed, especially in undiagnosed individuals, preclinical studies addressing this issue are rare. The present study examined the effects of continuous intrauterine exposure to a wide dose range of VPA (50, 100, 200, and 400 mg/kg/day) on the physical and behavioral response in peripubertal mice as a rodent model of adolescence. Body weight and the hot plate test [on postnatal days (PND) 25 and 32], the elevated plus-maze test (on PND35), and the open field test (on PND40) served to examine physical growth, the supraspinal reflex response to a painful thermal stimulus and conditional learning, anxiety-like/risk-assessment behavior, as well as novelty-induced psychomotor activity, respectively. VPA exposure produced the following responses: (i) a negative effect on body weight, except for the dose of 100 mg/kg/day in both sexes; (ii) an increase in the percentage of animals that responded to the thermal stimulus above the defined cut-off time interval and the response latency in both sexes; (iii) dose-specific changes within sexes in behavior provoked by a novel anxiogenic environment, i.e., in females less anxiety-like/risk-assessment behavior in response to the lowest exposure dose, and in males more pronounced anxiety-like/risk-assessment behavior after exposure to the highest dose and 100 mg/kg/day; (iv) dose-specific changes within sexes in novelty-induced psychomotor activity, i.e., in females a decrease in stereotypy-like activity along with an increase in rearing, and in males a decrease in stereotypy-like activity only. These findings show that continuous intrauterine exposure to VPA produces maladaptive functioning in different behavioral domains in adolescence and that the consequences are delicate to assess as they are dose-related within sexes.
Collapse
Affiliation(s)
- Jelena Podgorac
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slobodan Sekulić
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department of Neurology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gordana Stojadinović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Martać
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|
9
|
Arnavut E, Hamilton J, Yao R, Sajjad M, Hadjiargyrou M, Komatsu D, Thanos PK. Abstinence following intermittent methylphenidate exposure dose-dependently modifies brain glucose metabolism in the rat brain. Synapse 2022; 76:17-30. [PMID: 35730134 DOI: 10.1002/syn.22243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022]
Abstract
Methylphenidate (MP) is a psychostimulant chronically prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). Additionally, MP users may take breaks from using the medication during "drug holidays," which may include short-term or long-term breaks from medication. The present study utilized fluorodeoxyglucose (FDG) positron emission tomography (PET) to analyze the effects of chronic oral MP use and abstinence on brain glucose metabolism (BGluM) in rats at two different doses: high dose (HD) and low dose (LD). The schedule of treatment was 3 weeks on-treatment and 1 week off-treatment for a period of 13 weeks, followed by an abstinence period of 4 total weeks. Results showed that chronic MP treatment using this schedule did not lead to significant changes in BGluM when comparing the control to HD MP groups. However, significant activation in BGluM was observed after periods of abstinence between control and HD MP rats in the following brain regions: the trigeminal nucleus, reticular nucleus, inferior olive, lemniscus, mesencephalic reticular formation, inferior colliculus, and several areas of the cerebellum. These brain regions and functional brain circuit play a role in facial sensory function, the auditory pathway, organizing connections between the thalamus and cortex, motor learning, auditory function, control over eye movement, auditory information integration, and both motor and cognitive functions. These results, when considered with previous studies, indicate that MP schedule of use may have differing effects on BGluM. BGluM following long-term MP use was dependent on MP dose and schedule of use in rats. This study was conducted in non-ADHD model rats with the aim to establish an understanding of the effects of MP itself, especially given the growing chronic off-label and prescribed use of MP. Further studies are needed for analysis of the drug's effects on an ADHD model.
Collapse
Affiliation(s)
- Eliz Arnavut
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, New York, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York.,Department of Psychology, State University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Hanna C, Hamilton J, Arnavut E, Blum K, Thanos PK. Brain Mapping the Effects of Chronic Aerobic Exercise in the Rat Brain Using FDG PET. J Pers Med 2022; 12:jpm12060860. [PMID: 35743644 PMCID: PMC9224807 DOI: 10.3390/jpm12060860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Exercise is a key component to health and wellness and is thought to play an important role in brain activity. Changes in brain activity after exercise have been observed through various neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). The precise impact of exercise on brain glucose metabolism (BGluM) is still unclear; however, results from PET studies seem to indicate an increase in regional metabolism in areas related to cognition and memory, direction, drive, motor functions, perception, and somatosensory areas in humans. Using PET and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), we assessed the changes in BGluM between sedentary and chronic exercise in rats. Chronic treadmill exercise treatment demonstrated a significant increase in BGluM activity in the following brain regions: the caudate putamen (striatum), external capsule, internal capsule, deep cerebellar white matter, primary auditory cortex, forceps major of the corpus callosum, postsubiculum, subiculum transition area, and the central nucleus of the inferior colliculus. These brain regions are functionally associated with auditory processing, memory, motor function, and motivated behavior. Therefore, chronic daily treadmill running in rats stimulates BGluM in distinct brain regions. This identified functional circuit provides a map of brain regions for future molecular assessment which will help us understand the biomarkers involved in specific brain regions following exercise training, as this is critical in exploring the therapeutic potential of exercise in the treatment of neurodegenerative disease, traumatic brain injury, and addiction.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - Eliz Arnavut
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
11
|
Horii-Hayashi N, Nomoto K, Endo N, Yamanaka A, Kikusui T, Nishi M. Hypothalamic perifornical Urocortin-3 neurons modulate defensive responses to a potential threat stimulus. iScience 2021; 24:101908. [PMID: 33385113 PMCID: PMC7770982 DOI: 10.1016/j.isci.2020.101908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Defensive behaviors are evolved responses to threat stimuli, and a potential threat elicits risk assessment (RA) behavior. However, neural mechanisms underlying RA behavior are hardly understood. Urocortin-3 (Ucn3) is a member of corticotropin-releasing factor peptide family and here, we report that Ucn3 neurons in the hypothalamic perifornical area (PeFA) are involved in RA of a novel object, a potential threat stimulus, in mice. Histological and in vivo fiber photometry studies revealed that the activity of PeFA Ucn3 neurons was associated with novel object investigation involving the stretch-attend posture, a behavioral marker for RA. Chemogenetic activation of these neurons increased RA and burying behaviors toward a novel object without affecting anxiety and corticosterone levels. Ablation of these neurons caused the abnormal behaviors of gnawing and direct contacts with novel objects, especially in a home-cage. These results suggest that PeFA Ucn3 neurons modulate defensive responses to a potential threat stimulus.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
- Department of Physiology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| |
Collapse
|
12
|
McGregor M, Richer K, Ananth M, Thanos PK. The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav 2020; 10:e01646. [PMID: 32562468 PMCID: PMC7428510 DOI: 10.1002/brb3.1646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Novel environment stimulation is thought to have an important role in cognitive development and has been shown to encourage exploratory behavior in rats. However, psychopathology or perceived danger or stress can impede this exploratory drive. The balance between brain circuits controlling the exploratory drive elicited by a novel environment, and the avoidance response to stressors, is not well understood. METHODS Using positron emission tomography (PET) and the glucose analog [18 F]fluorodeoxyglucose (18F-FDG), we assessed awake brain glucose metabolism (BGluM) in rats while in a novel environment (cage of an unfamiliar male rat) and non-novel environment (the animal's home cage). RESULTS Exposure to the novel environment increased BGluM in regions associated with vision (visual cortex), motor function and motivated behavior (striatum and motor cortex), and anxiety (stria terminalis), and decreased BGluM in regions associated with auditory processing (auditory cortex, insular cortex, inferior colliculus), locomotor activity (globus pallidus, striatum, motor cortex, ventral thalamic nucleus), spatial navigation (retrosplenial cortex), and working memory (hippocampus, cingulate cortex, prelimbic cortex, orbitofrontal cortex). CONCLUSION These results suggest that the novel cage is a stressful environment that inhibits activity in brain regions associated with exploratory behavior. Patterns of inhibition in the novel cage also support the proposed rat default mode network, indicating that animals are more cognitively engaged in this environment. Additionally, these data support the unique capability of combining FDG-PET with psychopharmacology experiments to examine novelty seeking and brain activation in the context of decision making, risk taking, and cognitive function more generally, along with response to environmental or stress challenges.
Collapse
Affiliation(s)
- Matthew McGregor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaleigh Richer
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mala Ananth
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|