1
|
Xu M, Nikolin S, Samaratunga N, Chow EJH, Loo CK, Martin DM. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024; 34:250-276. [PMID: 36857011 PMCID: PMC10920443 DOI: 10.1007/s11065-023-09580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2023] [Indexed: 03/02/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a commonly used form of rTMS to treat neuropsychiatric disorders. Emerging evidence suggests that 'offline' HF-rTMS may have cognitive enhancing effects, although the magnitude and moderators of these effects remain unclear. We conducted a systematic review and meta-analysis to clarify the cognitive effects of offline HF-rTMS in healthy individuals. A literature search for randomised controlled trials with cognitive outcomes for pre and post offline HF-rTMS was performed across five databases up until March 2022. This study was registered on the PROSPERO international prospective protocol for systematic reviews (PROSPERO 2020 CRD 42,020,191,269). The Risk of Bias 2 tool was used to assess the risk of bias in randomised trials. Separate analyses examined the cognitive effects of excitatory and inhibitory forms of offline HF-rTMS on accuracy and reaction times across six cognitive domains. Fifty-three studies (N = 1507) met inclusion criteria. Excitatory offline HF-rTMS showed significant small sized effects for improving accuracy (k = 46, g = 0.12) and reaction time (k = 44, g = -0.13) across all cognitive domains collapsed. Excitatory offline HF-rTMS demonstrated a relatively greater effect for executive functioning in accuracy (k = 24, g = 0.14). Reaction times were also improved for the executive function (k = 21, g = -0.11) and motor (k = 3, g = -0.22) domains following excitatory offline HF-rTMS. The current review was restricted to healthy individuals and future research is required to examine cognitive enhancement from offline HF-rTMS in clinical cohorts.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Nisal Samaratunga
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Esther Jia Hui Chow
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- Black Dog Institute, Sydney, Australia.
- UNSW Sydney, High St, Kensington, NSW, 2052, Australia.
| |
Collapse
|
2
|
Farrokhi MR, Salehi S, Nejabat N, Safdari M, Ramezani Abadeh H. Beneficial Effect of Repetitive Transcranial Magnetic Stimulation Combined With Physiotherapy After Cervical Spondylotic Myelopathy Surgery. J Clin Neurophysiol 2024; 41:182-187. [PMID: 35583400 DOI: 10.1097/wnp.0000000000000949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Cervical spondylotic myelopathy (CSM) is one of the most notable causes of spinal cord impairment among elderly people worldwide. Little is written about the influence of postoperative rehabilitation on recovery of function in patients with CSM. In this study, we assessed the combined effects of repetitive transcranial magnetic stimulation (rTMS) combined with physiotherapy and physiotherapy alone on motor and sensory improvement assessed after spinal cord decompression in patients with CSM. METHODS This prospective study comprised 52 patients with CSM; they were divided into two randomized groups after spinal cord decompression. The first group (group Ι) includes 26 patients, received a combination of rTMS and physiotherapy. The second group (group ΙΙ) of 26 patients underwent only physiotherapy. The neurologic assessment measures, including American Spinal Cord Injury Association score, modified Japanese Orthopaedic Association score, Ashworth scale, and Nurick grade, were recorded before and after rehabilitation interventions for each patient. RESULTS According to the neurologic assessment measures, physiotherapy with/without rTMS after surgical decompression corresponded to significant improvement of motor function ( P < 0. 01) without significant restoration of sensory function ( P > 0. 01). Recovery rates of motor function were significantly better in group Ι than in group ΙΙ ( P < 0. 01). There was no significant difference between two groups with respect to age ( P = 0.162) and sex ( P = 1.00). CONCLUSIONS Although physiotherapy with/without rTMS improves motor function recovery after CSM surgery, rTMS in combination with physiotherapy leads to a more rapid motor function recovery than physiotherapy alone.
Collapse
Affiliation(s)
- Majid R Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; and
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Nejabat
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Safdari
- Department of Neurosurgery, Khatam-Al-Anbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
3
|
Dong L, Tao X, Gong C, Long Y, Xiao L, Luo Y, Wang M, Zhong Y. Effects of central-peripheral FMS on urinary retention after spinal cord injury: a pilot randomized controlled trial protocol. Front Neurol 2024; 14:1274203. [PMID: 38249751 PMCID: PMC10797019 DOI: 10.3389/fneur.2023.1274203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024] Open
Abstract
Background Urinary retention is a common complication of spinal cord injury (SCI), which can seriously affect the quality of life of patients. Function magnetic stimulation (FMS) has been widely used in the recovery of neurological function in various diseases, but its application in urinary retention after SCI remains unclear. Therefore, we would like to conduct a pilot randomized controlled trial (RCT) to observe the feasible effect of FMS on urinary retention after SCI, to explore its mechanism of action. Method/design This is a single-center pilot RCT, which 60 patients with urinary retention after SCI will be selected, numbered in chronological order of hospitalization, and randomly divided into 4 groups using the random number table method, Groups A (control group), Group B, Group C, and Group D; Each group will receive the same conventional rehabilitation treatment. The whole intervention period 2 weeks and will be evaluated before and after treatment to collect data on residual bladder volume, functional near-infrared spectroscopy (fNIRS), changes in voiding condition, changes in surface electromyography (SEMG) values of pelvic floor muscle and quality of life scores (QoL). Study hypothesis We hypothesized that FMS for the treatment of urinary retention after SCI would have a significant clinical feasible effect;and that peripheral combined with central FMS would be more effective than single-site FMS for the treatment of urinary retention after SCI. Objective (1) To illustrate the clinical effectiveness of FMS in the treatment of urinary retention after SCI and to provide a new treatment modality for the patients; (2) Comparison of the differences in the efficacy of central and peripheral single FMS and combined central and peripheral FMS in the treatment of urinary retention after SCI; (3) To explore the central control mechanisms of bladder function recovery after SCI in conjunction with changes in fNIRS. Trial registration This study has been ethically approved by the Scientific and Ethics Committee of the First Affiliated Hospital of Gannan Medical university with approval number (LLSC-2022112401). It has been registered with the China Clinical Trials Registry with the registration number: ChiCTR2200067143.
Collapse
Affiliation(s)
- Lingyan Dong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xi Tao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cheng Gong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Long
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yun Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Maoyuan Wang
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, China
| | - Yanbiao Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
6
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
7
|
Qin Y, Liu X, Guo X, Liu M, Li H, Xu S. Low-Frequency Repetitive Transcranial Magnetic Stimulation Restores Dynamic Functional Connectivity in Subcortical Stroke. Front Neurol 2021; 12:771034. [PMID: 34950102 PMCID: PMC8689061 DOI: 10.3389/fneur.2021.771034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose: Strokes consistently result in brain network dysfunction. Previous studies have focused on the resting-state characteristics over the study period, while dynamic recombination remains largely unknown. Thus, we explored differences in dynamics between brain networks in patients who experienced subcortical stroke and the effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) on dynamic functional connectivity (dFC). Methods: A total of 41 patients with subcortical stroke were randomly divided into the LF-rTMS (n = 23) and the sham stimulation groups (n = 18). Resting-state functional MRI data were collected before (1 month after stroke) and after (3 months after stroke) treatment; a total of 20 age- and sex-matched healthy controls were also included. An independent component analysis, sliding window approach, and k-means clustering were used to identify different functional networks, estimate dFC matrices, and analyze dFC states before treatment. We further assessed the effect of LF-rTMS on dFCs in patients with subcortical stroke. Results: Compared to healthy controls, patients with stroke spent significantly more time in state I [p = 0.043, effect size (ES) = 0.64] and exhibited shortened stay in state II (p = 0.015, ES = 0.78); the dwell time gradually returned to normal after LF-rTMS treatment (p = 0.015, ES = 0.55). Changes in dwell time before and after LF-rTMS treatment were positively correlated with changes in the Fugl-Meyer Assessment for Upper Extremity (pr = 0.48, p = 0.028). Moreover, patients with stroke had decreased dFCs between the sensorimotor and cognitive control domains, yet connectivity within the cognitive control network increased. These abnormalities were partially improved after LF-rTMS treatment. Conclusion: Abnormal changes were noted in temporal and spatial characteristics of sensorimotor domains and cognitive control domains of patients who experience subcortical stroke; LF-rTMS can promote the partial recovery of dFC. These findings offer new insight into the dynamic neural mechanisms underlying effect of functional recombination and rTMS in subcortical stroke. Registration: http://www.chictr.org.cn/index.aspx, Unique.identifier: ChiCTR1800019452.
Collapse
Affiliation(s)
- Yin Qin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xiaoying Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xiaoping Guo
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Minhua Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Hui Li
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Shangwen Xu
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| |
Collapse
|
8
|
Wang X, Li L, Wei W, Zhu T, Huang GF, Li X, Ma HB, Lv Y. Altered activation in sensorimotor network after applying rTMS over the primary motor cortex at different frequencies. Brain Behav 2020; 10:e01670. [PMID: 32506744 PMCID: PMC7375128 DOI: 10.1002/brb3.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) can modulate brain activity both in the stimulated site and remote brain areas of the sensorimotor network. However, the modulatory effects of rTMS at different frequencies remain unclear. Here, we employed finger-tapping task-based fMRI to investigate alterations in activation of the sensorimotor network after the application of rTMS over the left M1 at different frequencies. MATERIALS AND METHODS Forty-five right-handed healthy participants were randomly divided into three groups by rTMS frequency (HF, high-frequency, 3 Hz; LF, low-frequency, 1 Hz; and SHAM) and underwent two task-fMRI sessions (RH, finger-tapping with right index finger; LH, finger-tapping with left index finger) before and after applying rTMS over the left M1. We defined regions of interest (ROIs) in the sensorimotor network based on group-level activation maps (pre-rTMS) from RH and LH tasks and calculated the percentage signal change (PSC) for each ROI. We then assessed the differences of PSC within HF or LF groups and between groups. RESULTS Application of rTMS at different frequencies resulted in a change in activation of several areas of the sensorimotor network. We observed the increased PSC in M1 after high-frequency stimulation, while we detected the reduced PSC in the primary sensory cortex (S1), ventral premotor cortex (PMv), supplementary motor cortex (SMA), and putamen after low-frequency stimulation. Moreover, the PSC in the SMA, dorsal premotor cortex (PMd), and putamen in the HF group was higher than in the LF group after stimulation. CONCLUSION Our findings suggested that activation alterations within sensorimotor network are dependent on the frequency of rTMS. Therefore, our findings contribute to understanding the effects of rTMS on brain activation in healthy individuals and ultimately may further help to suggest mechanisms of how rTMS could be employed as a therapeutic tool.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingyu Li
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Shandong Huayu University of Technology, Dezhou, China
| | - Wei Wei
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Tingting Zhu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Guo-Feng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Hui-Bin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China.,Integrated Medical Research School, Jiamusi University, Jiamusi, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|